\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.
Answer:
a) 30 kangaroos in 2030
b) decreasing 8% per year
c) large t results in fractional kangaroos: P(100) ≈ 1/55 kangaroo
Step-by-step explanation:
We assume your equation is supposed to be ...
P(t) = 76(0.92^t)
__
a) P(10) = 76(0.92^10) = 76(0.4344) = 30.01 ≈ 30
In the year 2030, the population of kangaroos in the province is modeled to be 30.
__
b) The population is decreasing. The base 0.92 of the exponent t is the cause. The population is changing by 0.92 -1 = -0.08 = -8% each year.
The population is decreasing by 8% each year.
__
c) The model loses its value once the population drops below 1/2 kangaroo. For large values of t, it predicts only fractional kangaroos, hence is not realistic.
P(100) = 75(0.92^100) = 76(0.0002392)
P(100) ≈ 0.0182, about 1/55th of a kangaroo
Answer:
3
Step-by-step explanation:
z/12=18/72 z/12=1/4 z=3
Answer:
Yes
Step-by-step explanation:
a^2+b^2=c^2 is for right triangle so
6^2+8^2=10^2
36+64=100
100=100
so it's a right triangle
Answer:
put the first point on -1 and then put your arrow --->
Step-by-step explanation: