Answer:
So, the correct answer is <em><u>the strong nuclear force</u></em>. It actually pulls together nuetrons and protons that are in the nucleus. At very tiny distances only, like those inside the nucleus, so, this strong force succeded in dealing with the electromagnetic force, and it basically stops the electrical repulsion of protons from blowing apart the nucleus.
<u><em>Mark as brainlies please, I need a few more :D</em></u>
Answer:
Explanation:
Given
Car speed decreases at a constant rate from 64 mi/h to 30 mi/h
in 3 sec


we know acceleration is given by 


negative indicates that it is stopping the car
Distance traveled



s=63.038 m
Answer:
Given that
V2/V1= 0.25
And we know that in adiabatic process
TV^န-1= constant
So
T1/T2=( V1 /V2)^ န-1
So = ( 1/0.25)^ 0.66= 2.5
Also PV^န= constant
So P1/P2= (V2/V1)^န
= (1/0.25)^1.66 = 9.98
A. RMS speed is
Vrms= √ 3RT/M
But this is also
Vrms 2/Vrms1= (√T2/T1)
Vrms2=√2.5= 1.6vrms1
B.
Lambda=V/4π√2πr²N
So
Lambda 2/lambda 1= V2/V1 = 0.25
So the mean free path can be inferred to be 0.25 times the first mean free path
C. Using
Eth= 3/2KT
So Eth2/Eth1= T2/T1
So
Eth2= 2.5Eth1
D.
Using CV= 3/2R
Cvf= Cvi
So molar specific heat constant does not change