Answer;
D. The car would begin to move in the direction it was headed in a straight line.
Explanation;
-Centripetal force is any net force causing uniform circular motion. The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration.
-The centripetal force causing the car to turn in a circular path is due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.
-Therefore,If the centripetal and thus frictional force between the tires and the roadbed of a car moving in a circular
path were reduced then the car would begin to move in the direction it was headed in a straight line.
Answer:
90 J
Explanation:
W=fd
W=(75)(1.2)
W= 90 J
The mass of the ion is 5.96 X 10⁻²⁵ kg
<u>Explanation:</u>
The electrical energy given to the ion Vq will be changed into kinetic energy 
As the ion moves with velocity v in a magnetic field B then the magnetic Lorentz force Bqv will be balanced by centrifugal force
.
So,

and

Right from these eliminating v, we can derive

On substituting the value, we get:

m = 5.96 X 10⁻²⁵ kg.
If we consider any system moving with u<span>niform circular motion we can notice that the MAGNITUDE of the accelaration remains constant. However, there is a change in the direction of the acceleration at every instant of time .
As the object moves through the circle the acceleration changes its direction always pointing to the center of the circle.</span>
Answer:
I = 1.38 A
Explanation:
Given that,
Charge, q = 5000 C
Time, t = 1 hour = 3600 s
We need to find the current intensity. The current intensity is equal to the electric charge per unit time. It can be given by :

Substitute all the values in the above formula

So, the current intensity is 1.38 A.