Answer:
The solution is:
![-7r-4\ge \:\:4r+2\quad \::\quad \:\begin{bmatrix}\mathrm{Solution:}\:&\:r\le \:\:-\frac{6}{11}\:\\ \:\:\mathrm{Decimal:}&\:r\le \:\:-0.54545\dots \:\\ \:\:\mathrm{Interval\:Notation:}&\:(-\infty \:\:,\:-\frac{6}{11}]\end{bmatrix}](https://tex.z-dn.net/?f=-7r-4%5Cge%20%5C%3A%5C%3A4r%2B2%5Cquad%20%5C%3A%3A%5Cquad%20%5C%3A%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Ar%5Cle%20%5C%3A%5C%3A-%5Cfrac%7B6%7D%7B11%7D%5C%3A%5C%5C%20%5C%3A%5C%3A%5Cmathrm%7BDecimal%3A%7D%26%5C%3Ar%5Cle%20%5C%3A%5C%3A-0.54545%5Cdots%20%5C%3A%5C%5C%20%5C%3A%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%5C%3A%2C%5C%3A-%5Cfrac%7B6%7D%7B11%7D%5D%5Cend%7Bbmatrix%7D)
Please check the attached line graph below.
Step-by-step explanation:
Given the expression

Add 4 to both sides

Simplify

Subtract 4r from both sides

Simplify

Multiply both sides by -1 (reverses the inequality)

Simplify

Divide both sides by 11

Simplify

Therefore, the solution is:
![-7r-4\ge \:\:4r+2\quad \::\quad \:\begin{bmatrix}\mathrm{Solution:}\:&\:r\le \:\:-\frac{6}{11}\:\\ \:\:\mathrm{Decimal:}&\:r\le \:\:-0.54545\dots \:\\ \:\:\mathrm{Interval\:Notation:}&\:(-\infty \:\:,\:-\frac{6}{11}]\end{bmatrix}](https://tex.z-dn.net/?f=-7r-4%5Cge%20%5C%3A%5C%3A4r%2B2%5Cquad%20%5C%3A%3A%5Cquad%20%5C%3A%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Ar%5Cle%20%5C%3A%5C%3A-%5Cfrac%7B6%7D%7B11%7D%5C%3A%5C%5C%20%5C%3A%5C%3A%5Cmathrm%7BDecimal%3A%7D%26%5C%3Ar%5Cle%20%5C%3A%5C%3A-0.54545%5Cdots%20%5C%3A%5C%5C%20%5C%3A%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%28-%5Cinfty%20%5C%3A%5C%3A%2C%5C%3A-%5Cfrac%7B6%7D%7B11%7D%5D%5Cend%7Bbmatrix%7D)
Please check the attached line graph below.
If this is just an expression, then all you have to do is combine like terms, or groups of numbers and variables that have the same variable.
When simplified, you get the equation
-12+ 16r or
-18+6+3r+13r=16r-12
If it stays as fraction the answer would be 7/14
Answer:
5
Step-by-step explanation:
ABCDEDJGHIKLMNOP
sorry just wanted to see if the bold thing works