In order to find the radius of the coin, we need to use:
Ac = V^2 r
In which,
Ac = acceleration of the coin = 2.2 m/s^2
V= rotational Speed = (18/12) * 2πr
r= Radius
so,
<span>2.2 = 9(π^2)(r^2) / r
</span><span>= 9(π^2)r
</span>
<span>r = 2.2 / 9(π^2) = 0.02476740044 m . . .or you can rounded it up to 0.025 m</span>
Answer:
It returned to where it had started at the end of the trip
Explanation:
Answer:
Explanation:
let the charge is q. velocity, v = 24.7 m/s
magnetic force, F = 2.38 x 10^-4 N
Let the magnetic field is B.
Velocity, v' = 5.64 m/s
angle, θ = 21.2°
The force experienced by a charged particle placed in a magnetic field is given by
F = q x v x B x Sinθ
in first case
2.38 x 10^-4 = q x 24.7 x B x Sin 90 .... (1)
in second case
F = q x 5.64 x B x Sin 21.2° .... (2)
Divide equation (2) by equation (1), we get

F = 1.97 x 10^-5 N
Answer:

Explanation:
I'm assuming the units for force and mass are Newtons and kilograms, respectively.
Rearranging Newton's first law (F=m*a) to solve for acceleration:
F=m*a

The acceleration is 4 meters per second squared and was found by rearranging Newton's first law in order to solve for acceleration.
B) The heat absorbed by the engine is

while the heat expelled is

, therefore the work done by the engine is the difference between the heat absorbed and the heat expelled:

a) The efficiency of the engine is the ratio between the work done by the engine and the heat absorbed, therefore: