Answer:
a = 12 [m/s²]
Explanation:
To solve this problem we must use Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
ΣF = m*a
where:
ΣF = sum of forces acting on a body [N] (units of Newtons)
m = mass = 0.5 [kg]
a = acceleration [m/s²]
Let's take the direction of positive forces to the right and negative forces directed to the left
2 + 8 - 4 = 0.5*a
6 = 0.5*a
a = 12 [m/s²]
Answer:
B) 2.7 g of aluminium has a volume of 1 cm^3
Explanation:
Density can be defined as mass all over the volume of an object.
Simply stated, density is mass per unit volume of an object.
Mathematically, density is given by the equation;

If the density of aluminum is 2.7 g/cm³, it simply means that 2.7 g of aluminium has a volume of 1 cm³
Check:
Given the following data;
Mass = 2.7 grams
Volume = 1 cm³
Substituting into the formula, we have;

Density = 2.7 g/cm³
Due to the Composition, different asteroids reflect different percentages of the light falling on them.
What are Asteroids:
- Asteroids are small, rocky objects that orbit the Sun. Although asteroids orbit the Sun like planets, they are much smaller than planets.
- Asteroids are generally made up of rocky material, metals and their size are large in comparison to comets. Asteroid belt is found between Jupiter and Mars.
Composition of Asteroids:
- Most of the asteroids in the Main Belt are made of rock and stone.
- The remaining asteroids are made up of a mix of these, along with carbon-rich materials. Some of the more distant asteroids tend to contain more ices.
We determine reflectivity of asteroids by comparing the brightness of light in the visible spectrum to the brightness of light in the infrared spectrum. The light shining from asteroids is reflected sunlight.
Hence we can say that,
Due to the Composition, different asteroids reflect different percentages of the light falling on them.
Learn more about Asteroids here:
<u>brainly.com/question/13047582</u>
<u />
#SPJ4
False, that does not apply to some
Um student a because they were there a few seconds ahead