The balanced chemical reaction is written as:
Sb2S3 + 6HCl = 6SbCl<span>3 + 3H2S
We are given the amount of </span><span>antimony(III) sulfide to be used in the reaction. This is amount will be used for the calculations. We do as follows:
2.85 g Sb2S3 ( 1 mol / </span><span>339.715 g ) ( 6 mol SbCl3 / 1 mol Sb2S3 ) (</span> 228.13 g / mol ) = 11.48 g SbCl3
22.7 liters
The molar volume of an ideal gas depends on the temperature and pressure. One mole of any ideal gas occupies 22.7 liters at 0 0C and 1 bar (STP).
Hope this helped
The empirical formula for pyrite is FeS2.
HOW TO CALCULATE EMPIRICAL FORMULA:
- The empirical formula represents the simplest whole number ratio of constituents element of a compound. The empirical formula of pyrite can be calculated as follows:
46.5 mass % Fe = 46.5g of Fe
53.5 mass % S = 53.5g of S
- Next, we divide each element's mass value by its molar mass
Fe = 46.5g ÷ 56g/mol = 0.83mol
S = 53.5g ÷ 32g/mol = 1.67mol
- Next, we divide each mole value by the smallest (0.83mol)
Fe = 0.83mol ÷ 0.83 = 1
S = 1.67mol ÷ 0.83 = 2.014
Approximately, the ratio of Fe to S is 1:2. Therefore, the empirical formula of pyrite is FeS2.
Learn more at: brainly.com/question/14044066?referrer=searchResults
Answer:
31.67 mph
Explanation:
To calculate the average speed of the truck, we must first obtain the total distance travelled by the truck followed by the total time taken for the truck to cover the distance travelled.
The following data were obtained from the question include:
Total distance) = 30 + 45 + 50 + 65 = 190 miles
Total time = 1 + 2 +1 +2 = 6 hours
Average speed =.?
Average speed = Total distance / Total time
Average speed = 190 /6
Average speed = 31.67 mph
Therefore, the average speed of the truck is 31.67 mph
Answer:
The molar mass of carbon
Explanation:
Before the mass (in grams) of two moles of carbon can be determined, <u>the molar mass of the element would be needed.</u>
<em>This is because the number of mole of an element is the ratio of its mass and the molar mass</em>. That is,
number of mole = mass/molar mass
Hence, the mass of elements can be obtained by making it the subject of the formular;
mass = number of mole x molar mass
<em>Therefore, the molar mass of carbon would be needed before the mass of 2 moles of the element can be determined.</em>