1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
son4ous [18]
2 years ago
6

Solve for x : Y=3x- 8 Y=-4x+6

Mathematics
1 answer:
LenaWriter [7]2 years ago
8 0
3X-8=-4X+6 7X-8=6 7X=14 X=14\7=2
You might be interested in
(02.07)Which relationship is always true for the angles x, y, and z of triangle ABC? A triangle is shown with a leg extending pa
zysi [14]
Check out the attached image. I drew what I think your book is showing. The figure on the left is triangle ABC without any extended segments. The figure on the right has segment AB extended shown in red. This forms the exterior angle x

The rule that connects x, y and z together is the remote interior angle theorem. It says that adding two interior angles is going to be equal to the exterior angle that is not touching either interior angle. The "remote" part means "far away" so just think of the two angles that are furthest way or not touching the exterior angle in question. 

In terms of algebra, the rule is
x+y = z

3 0
3 years ago
Read 2 more answers
HELP PLZZZZZZZZ HELP PLZZZZZZZZZ
Lesechka [4]
1. 6.73 x 10^6
2. 1.33 x 10^4
3.9.77 x 10^22
4. 3.84 x 10^5
The rest i didn’t understand what where you trying to say
7 0
3 years ago
X + y = -3 & 5x - 2y = -50 ELIMINATION
Karolina [17]
I gotchu luh bro....

7 0
3 years ago
Convert the Cartesian equation (x 2 + y 2)2 = 4(x 2 - y 2) to a polar equation.
SashulF [63]

<u>ANSWER</u>

{r}^{2}  = 4  \cos2\theta

<u>EXPLANATION</u>

The Cartesian equation is

{( {x}^{2}  +  {y}^{2} )}^{2}  = 4( {x}^{2} -  {y}^{2}  )

We substitute

x = r \cos( \theta)

y = r \sin( \theta)

and

{x}^{2}  +  {y}^{2}  =  {r}^{2}

This implies that

{( {r}^{2} )}^{2}  = 4(( { r \cos\theta)  }^{2} -  {(r \sin\theta) }^{2}  )

Let us evaluate the exponents to get:

{r}^{4}  = 4({  {r}^{2} \cos^{2}\theta } -   {r}^{2}  \sin^{2}\theta)

Factor the RHS to get:

{r}^{4}  = 4{r}^{2} ({   \cos^{2}\theta } -   \sin^{2}\theta)

Divide through by r²

{r}^{2}  = 4 ({   \cos^{2}\theta } -   \sin^{2}\theta)

Apply the double angle identity

\cos^{2}\theta -\sin^{2}\theta=  \cos(2 \theta)

The polar equation then becomes:

{r}^{2}  = 4  \cos2\theta

7 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
Other questions:
  • Members of the garner high school yearbook committee need to put 1,344 student photos on 24 pages in the yearbook they want to p
    11·2 answers
  • Select the cone(s) that are similar to a cone with a height of 9 meters and a radius of 3 meters.
    9·1 answer
  • How to solve<br> ?? I need help guys please anyone just help
    15·2 answers
  • What is the answer to the problem
    5·1 answer
  • Calculate:
    7·1 answer
  • A bag has 30 towels numbered 1 to 30. What's the ratio for odds to evens?
    6·1 answer
  • Explain how you would use fractions bars to find the quotient of 10/12 ÷ 4/6.what is the quotient?
    11·1 answer
  • П
    6·1 answer
  • Good Day everyone! Kindly give me the formula for finding the original price, discount rate, discount and sale price.
    8·1 answer
  • Use the graph to find the cost of 8 shirts.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!