1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
8

1. cot x sec4x = cot x + 2 tan x + tan3x

Mathematics
1 answer:
Mars2501 [29]3 years ago
5 0
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
You might be interested in
Which one goes with which?:
geniusboy [140]
Decimal= a number that uses place value and decimal point to show part of a whole

tenth= one part of ten equal parts

hundredth=one part of one hundred equal parts
6 0
3 years ago
7. What is the solution to 9x = -63?<br> A. x=54<br> B. x= 7<br> C. x= -7<br> D. x = -54
Dmitry [639]

Given the equation 9x = -63, the numerical value of x is -7.

<h3>What is the solution to the given equation?</h3>

Given the equation in the question;

9x = -63

To determine the value of x, we divide both sides by the coefficient of x.

9x = -63

9x/9 = -63/9

x = -7

Given the equation 9x = -63, the numerical value of x is -7.

Learn more about equations here: brainly.com/question/14686792

#SPJ1

6 0
2 years ago
PLEASE HELP. Mr. Washington made several purchases for his printing business. The mean price of the purchases was $150, and the
suter [353]

Answer:

the 4th statement

Step-by-step explanation:

3 0
3 years ago
Find the indicated root. 3^√n^75
ad-work [718]

Answer:

Step-by-step explanation:

If you meant

\sqrt[3]{n^{75}}\\ \\ n^{{75}^{\frac{1}{3}}\\ \\ n^{\frac{75}{3}}\\ \\ n^{25}

8 0
3 years ago
Use the three steps to solve the problem.
sukhopar [10]

Try this option (see the attacthed file; answer is marked with red colour); note, that

t_{c-} = upstream \ time; \ t_{c+}=downstream \ time.

answer: 2 m/h.

6 0
4 years ago
Read 2 more answers
Other questions:
  • Find the measure of arc NL. A) 21° B) 42° C) 45° D) 84°
    6·1 answer
  • Mr. Haney has 11 coins in dimes and quarters. The value of his coins is $2.15. how many dimes does he have?
    9·1 answer
  • which expressions are equivalent to 2? Choose ALL that apply. 6 6 6 6 6 6 2.2.2.2.2.2 2.6 4.16 12 - 12 8.8​
    6·1 answer
  • Find A and B given that the function y=Ax√+Bx√ has a minimum value of 54 at x = 81.
    13·1 answer
  • A home is to be built on a 56 foot 9 inch wide lot. The house is 5 feet 5 inches from the side of the lot and is 34 feet 10 inch
    5·1 answer
  • Find the Point where the two lines intersect each other. What are the coordinates of this point?
    11·1 answer
  • The total cost of a vase of spring flowers at a flower shop depends on the number of flowers ordered. The vase costs $3, and eac
    6·2 answers
  • Mr. Hamilton surveyed his class to find the total number of hours each of his students slept the previous night. The histogram s
    11·2 answers
  • Geometry...Please help as soon as possible please and Thank you!!!
    11·1 answer
  • Solve the equation. Please make sure you double-check your solution (answer). <br> 15 = z -35
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!