1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
8

1. cot x sec4x = cot x + 2 tan x + tan3x

Mathematics
1 answer:
Mars2501 [29]3 years ago
5 0
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
You might be interested in
How do you do it?I'm lost
Leto [7]

Answer and Step-by-step explanation:

The way you complete this is by taking each points x and y and applying the translation. In this case the translation is x-7 and y+1.

Q's x and y are 1 , 1

R's x and y are 1 , 5

T's x and y are 5 , 1

S's x and y are 5 , 5

Now what you do is use the translation on all of these values.

Q's x and y turns into -6 , 2 (subtracted 7 to the 1 and added 1 to the 1)

R's x and y turns into -6 , 6

T's x and y are -2 , 2

S's x and y are -2 , 6

You can then plot the points on the graph and connect the lines to complete the reflection.

Hope this helps ! !

<3

4 0
3 years ago
Find the y-intercept and the slope of the line.<br> 6x-2y=5
solmaris [256]

Answer:

m=3

b=(0,5)

Step-by-step explanation:

6 0
2 years ago
20 POINTS!!!!!!!
zavuch27 [327]
So the first one is -0.5 and second is -0.5 the third one is -0.5 and the fourth is -0.25 so I would say that is D
8 0
3 years ago
A circle is the set of all points that are the same distance from one given point. find an example that contradicts this definit
Troyanec [42]

A circle exists as a curve sketched out by a point moving in a plane. The circle's perimeter exists the length of the line of the circle that creates the circle. It exists generally named the circumference of the circle.

<h3>What is a circle?</h3>

A circle exists as a curve sketched out by a point moving in a plane so that its distance from a given point exists constant; alternatively, it exists as the shape created by all points in a plane that exists at a set distance from a provided point, the center.

A.) The statement that rejects this characterization of the circle exists that the given point should be at the circle's center.

B.) An illustration of an indefinite term exists in the perimeter of the circle, The circle's perimeter exists the length of the line of the circle that makes the circle. It exists generally named the circumference of the circle.

To learn more about Circle refer to:

brainly.com/question/11833983

#SPJ4

4 0
2 years ago
Is 6/6 more than 3/3
hodyreva [135]
They are both equivalent to 1, so they are equal. 

4 0
3 years ago
Other questions:
  • Without solving, determine the number of solutions for this system. What does the graph of the system look like?
    14·2 answers
  • Betty has 741 coins in her piggy bank, worth a total of 10,725 cents. The piggy bank contains ONLY quarters and dimes. How many
    6·1 answer
  • Hey store buys a product for $37 and then marks it up 38% what is the final price
    15·2 answers
  • A wheel has a diameter of 70 cm and completes a revolution in 0.25 seconds at top speed
    8·1 answer
  • -18= 5-(6k - 19) i have the answer but i need help on how to get the answer 7?
    8·1 answer
  • Which operation would be completed second in the following expression?
    13·1 answer
  • a gardener installed 42.6 meters of fencing in a week. He installed 13.45 meters on Monday and 9.5 meters on Tuesday. He install
    14·1 answer
  • How do you find interval of increase or decrease??
    10·1 answer
  • Translating words into algebraic symbols​
    7·2 answers
  • There were 280 members in the ski
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!