1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
8

1. cot x sec4x = cot x + 2 tan x + tan3x

Mathematics
1 answer:
Mars2501 [29]3 years ago
5 0
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
You might be interested in
tinas salsa class membership which s $15 is deducted automatically from her bank account every month. which expression show the
mihalych1998 [28]
Y=-15x(12) I believe is the answer.
8 0
3 years ago
Solve y + 8 &lt; 13 <br> try y ? 7
Rudik [331]

Answer:

y<5

Step-by-step explanation:

y+8 < 13

   y < 13-8

   y < 5

8 0
2 years ago
A function which has a constant difference per interval is?
QveST [7]

Answer:

I think A or C I'm not sure tho

5 0
3 years ago
Pls help me out and pls explain
LenKa [72]

Answer:

It is a function

Step-by-step explanation:

The x has only one y and that makes it a function

5 0
3 years ago
Can someone help please<br> what get doesn't show on these graphs
Julli [10]

Answer: The answer is no solution

Step-by-step explanation: if we try to get x to one side we subtract 2x from 2x on both sides and get 4 < 3 which is not true.

7 0
3 years ago
Other questions:
  • NEED HELP ASAP! :((
    15·2 answers
  • Easy math question please help
    10·2 answers
  • The second hand on a clock is 8 cm,long.
    14·1 answer
  • Place the indicated product in the proper location on the grid. (3 - c 2d )(4 - 4c 2d )
    8·2 answers
  • Amy ran 3/4 of a mile. Convert into decimal. Show work.
    14·2 answers
  • Please proved explanation for answer.
    7·1 answer
  • Select the correct answer:
    14·1 answer
  • Write add, divide, multiply, and subtract in the correct order to complete the following sentence.
    14·1 answer
  • What is the area of this figure
    8·2 answers
  • According to the fundamental theorem of algebra, which polynomial function has exactly 6 roots? f (x) = 5 x superscript 4 baseli
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!