1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
8

1. cot x sec4x = cot x + 2 tan x + tan3x

Mathematics
1 answer:
Mars2501 [29]3 years ago
5 0
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
You might be interested in
Rx+9/5=h solve for x
Vika [28.1K]
When solving the equation, you first have h- 9/5. So it would by x=(h - 9/5). But you are not done yet. you still have to divide it by R to get x. So the final equation is x=(h - 9/5) ÷ R
7 0
3 years ago
What is answer if 2xyx5​
34kurt

Answer:

Answer is 3bu2(DeEZ)=1

Step-by-step explanation:

8 0
3 years ago
You suspect that the spiciness of food served in a restaurant is positively correlated with number of soft drinks ordered. What
Naily [24]
<span>B) Observe several cases of people ordering food of varying spice-levels and number of soft drinks ordered. thats what i think though.</span>
7 0
3 years ago
Read 2 more answers
A farmer saved $250 in four months. Which unit rate represents the farmer's savings? $1000 per year $1000 per month $750 per yea
Furkat [3]

Answer:

$750 per year

Step-by-step explanation:

The farmer saves $250 in four months.  You need to find out how much he makes in a year.  There are 12 months in a year.  Multiply the amount he saves by 3.

$250 × 3 = $750

The farmer saves $750 per year.

4 0
3 years ago
Find the length of side x to the nearest tenth
navik [9.2K]

Answer:

x = 2 sqrt(3)/3

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

sin theta = opp / hyp

sin 60 = 1 /x

x sin 60 =1

x = 1 /sin 60

x = 1 / sqrt(3)/2

x = 2 sqrt(3)/3

3 0
2 years ago
Other questions:
  • Write the sum of the numbers as the product of their GCF and another sum. Show your work. Can you guys help me please and explai
    6·1 answer
  • 3
    14·1 answer
  • The circumference of a circle is equal to pi times the diameter. Which direct variation equation represents this situation?
    15·1 answer
  • Given that a triangle has sides of length 4.1 cm and 7 cm. What is the range of possible length of the third side?
    13·1 answer
  • Is (0,2), (1.2), (2,2)(3,2) a function
    9·1 answer
  • What is the mechanical advantage of the screw shown below?
    8·1 answer
  • WILL GIVE BRAINLIEST. If 3x+5y=13 and 6x+7y=20, find the value of y/x
    15·2 answers
  • 20. Simplify: 4×^3√3x+5 ^3√10x
    14·1 answer
  • What is the area, in square feet, of the shaded part of the rectangle below?
    14·1 answer
  • The dimensions of a right rectangular prism are shown below. 1 in. 1a in. 2 in. in. How many cubes with side lengths of inch are
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!