1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
8

1. cot x sec4x = cot x + 2 tan x + tan3x

Mathematics
1 answer:
Mars2501 [29]3 years ago
5 0
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
You might be interested in
The amount A of the radioactive element radium in a sample decays at a rate proportional to the amount of radium present. Given
slavikrds [6]

Answer:

a) \frac{dm}{dt} = -k\cdot m, b) m(t) = m_{o}\cdot e^{-\frac{t}{\tau} }, c) m(t) = 10\cdot e^{-\frac{t}{2438.155} }, d) m(300) \approx 8.842\,g

Step-by-step explanation:

a) Let assume an initial mass m decaying at a constant rate k throughout time, the differential equation is:

\frac{dm}{dt} = -k\cdot m

b) The general solution is found after separating variables and integrating each sides:

m(t) = m_{o}\cdot e^{-\frac{t}{\tau} }

Where \tau is the time constant and k = \frac{1}{\tau}

c) The time constant is:

\tau = \frac{1690\,yr}{\ln 2}

\tau = 2438.155\,yr

The particular solution of the differential equation is:

m(t) = 10\cdot e^{-\frac{t}{2438.155} }

d) The amount of radium after 300 years is:

m(300) \approx 8.842\,g

4 0
3 years ago
Read 2 more answers
What is 7/10 as a decimal and a percent?
AlekseyPX
7 / 10 = 0.70 = 70%
6 0
3 years ago
Read 2 more answers
What is the value of x?<br><br> Enter your answer in the box.<br><br> X=
liubo4ka [24]

Answer:52

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Lucilla wondered what the average weight of each grapefruit was in a five-pound bag of grapefruits. She purchased six bags and c
elixir [45]

Answer:

6.9 oz and 8.1 oz

Step-by-step explanation:

The data collected by Lucilla is as follows:

7.1 oz

6.9 oz

7.3 oz

7.6 oz

8.1 oz

7.5 oz

We need to put this data in order, this will give us:

6.9 , 7.1 , 7.3 , 7.5 , 7.6 and 8.1

We can note that:

smallest value is 6.9 oz

largest value is 8.1 oz

all other values fall in this range

Therefore, the weight of an orange based on her calculations is between 6.9 oz and 8.1 oz

Hope this helps :)

5 0
3 years ago
Read 2 more answers
Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaas
alexira [117]
Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaas
3 0
2 years ago
Read 2 more answers
Other questions:
  • The Jensen family took a trip in September. Sally is calculating the gas mileage in miles per gallon for her dads SUV. When he f
    5·1 answer
  • Math question, note: there are two answers!!
    11·1 answer
  • Brandon buys a radio for $46.49 in a state where the sales tax is 7%.
    14·1 answer
  • PLEASE HELP WILL MARK BRAINIEST
    8·2 answers
  • Solve the inequality. Graph the solution set and write it in interval notation. .
    8·1 answer
  • Plz help I will give the brainlist
    12·1 answer
  • One question simple please help
    6·1 answer
  • 10) Which point in the table is not on the same
    5·1 answer
  • Brainliest Question Of The Day:
    15·1 answer
  • Which of the following is the solution to the equation - y = 24?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!