Answer:
Biofuels, Natural Gas, Wave Energy, etc.
Explanation:
what is it? Alternative energy sources is any energy sources that is alternative to fossil fuels
Answer:
Primary succession occurs following an opening of a pristine habitat, for example, a lava flow, an area left from retreated glacier, or abandoned strip mine. In contrast, secondary succession is a response to a disturbance, for example, forest fire, tsunami, flood, or an abandoned field.
Explanation:
Plasticity is most adaptive when the environment change <u>Slowly and predictably </u>throughout an organism's life.
The ability of individual genotypes to create various phenotypes when exposed to various environmental situations is known as phenotypic plasticity. Here, the emphasis is on the role of plasticity in evolution rather than the evolution of plasticity itself, i.e., the evolution of phenotypic traits and organismal variety through plasticity. Phenotypic plasticity is a crucial characteristic of developmental systems that enables the organism to deal with environmental variability and/or unpredictability, although its significance for adaptive evolution is still debated.
Learn more about Phenotypic Plasticity here-
brainly.com/question/24083818
#SPJ4
Answer:
1) CO₂
2) 0.2551 g
Explanation:
The balanced reactions are:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
MgCO₃ + 2HCl → MgCl₂ + H₂O + CO₂
1) The gas produced is CO₂.
2) Calculate mass of CaCO₃:
(0.5236 g) (0.4230) = 0.2215 g CaCO₃
Convert to moles:
(0.2215 g CaCO₃) (1 mol / 100.1 g) = 0.002213 mol CaCO₃
Find moles of CaCO₃:
(0.002213 mol CaCO₃) (1 mol CO₂ / mol CaCO₃) = 0.002213 mol CO₂
Convert to mass:
(0.002213 mol CO₂) (44.01 g / mol) = 0.09738 g CO₂
Calculate mass of MgCO₃:
(0.5236 g) (0.5770) = 0.3021 g MgCO₃
Convert to moles:
(0.3021 g MgCO₃) (1 mol / 84.31 g) = 0.003583 mol MgCO₃
Find moles of MgCO₃:
(0.003583 mol MgCO₃) (1 mol CO₂ / mol MgCO₃) = 0.003583 mol CO₂
Convert to mass:
(0.003583 mol CO₂) (44.01 g / mol) = 0.1577 g CO₂
Total mass of CO₂:
0.09738 g CO₂ + 0.1577 g CO₂ = 0.2551 g CO₂
Answer:
the action of rotating around an axis or center