Answer: The z-scores for a woman 6 feet tall is 2.96 and the z-scores for a a man 5'10" tall is 0.25.
Step-by-step explanation:
Let x and y area the random variable that represents the heights of women and men.
Given : The heights of women aged 20 to 29 are approximately Normal with mean 64 inches and standard deviation 2.7 inches.
i.e.

Since , 
Then, z-score corresponds to a woman 6 feet tall (i.e. x=72 inches).
[∵ 1 foot = 12 inches , 6 feet = 6(12)=72 inches]

Men the same age have mean height 69.3 inches with standard deviation 2.8 inches.
i.e.

Then, z-score corresponds to a man 5'10" tall (i.e. y =70 inches).
[∵ 1 foot = 12 inches , 5 feet 10 inches= 5(12)+10=70 inches]

∴ The z-scores for a woman 6 feet tall is 2.96 and the z-scores for a a man 5'10" tall is 0.25.
Answer:
2 * 10^3 = 2000.
Step-by-step explanation:
3.8/1.9 * 10^5/10^2
= 2 * 10^3
She would save $9.12 by using the better sale! I hope this helped!:)
Answer:
If Anne’s age is represented by the variable a then express Jenny’s age in terms of a if Jenny is three years less than half of Anne’s age
Answer:
m<5 = 95 degrees
Step-by-step explanation:
Let's first find m<1
=> m<1 = 180-85
=> m<1 = 95 degrees
Since,
m<1 = m<5 (Corresponding angles)
So,
m<5 = 95 degrees