Answer:
Step-by-step explanation:
We have the equations
4x + 3y = 18 where x = the side of the square and y = the side of the triangle
For the areas:
A = x^2 + √3y/2* y/2
A = x^2 + √3y^2/4
From the first equation x = (18 - 3y)/4
So substituting in the area equation:
A = [ (18 - 3y)/4]^2 + √3y^2/4
A = (18 - 3y)^2 / 16 + √3y^2/4
Now for maximum / minimum area the derivative = 0 so we have
A' = 1/16 * 2(18 - 3y) * -3 + 1/4 * 2√3 y = 0
-3/8 (18 - 3y) + √3 y /2 = 0
-27/4 + 9y/8 + √3y /2 = 0
-54 + 9y + 4√3y = 0
y = 54 / 15.93
= 3.39 metres
So x = (18-3(3.39) / 4 = 1.96.
This is a minimum value for x.
So the total length of wire the square for minimum total area is 4 * 1.96
= 7.84 m
There is no maximum area as the equation for the total area is a quadratic with a positive leading coefficient.
You have not provided the options, therefore, I cannot give an exact answer. However, I can help you with the procedures.
We are given that the ratio between the width and the length of the flag is 10 to 19.
This means that:

Therefore, to get the correct choice, all you have to do is divide the width by the length, if the result is 10/19, then the dimensions given are correct.
Examples:For length = 190 and width = 100,
width / length = 100 / 190 = 10 / 19 .........> correct choice
For length = 1.9 and width = 1,
width / length = 1 / 1.9 = 10 / 19 .......> correct choice
Hope this helps :)
Answer:
ok, te ayudaré
94÷4=23.5
535÷5=107
76÷3=25.33333333333
829÷4=207.25
26÷9=2.8888888889
569÷8=71.125
97÷9=10.7777777778
527÷3=175.6666666667
25÷4=6.25
534÷9=59.3333333333
58÷6=9.6666666667
37÷5=7.4
49÷2=24.5
156÷6=26
I hope it serves you, give me a crown please
Answer:
23%
Step-by-step explanation:
I think the best answer is d since 18x + 16x