Answer:
For bbff we have only 6.3% probability
Step-by-step explanation:
If the parents are heterozygous for both traits, them they are represented by:
BbFf × BbFf
Parent 1: BbFf
Parent 2: BbFf
We have to find the percentage of occurence of bb × ff, which is a child that has blue eyes and no freckles, with no dominant factor.
By distributing the possibilities in a Punnett square, <em>vide</em> picture. We have the following possibilities:
Genotype Count Percent
bBfF 4 25
BBfF 2 12.5
bBFF 2 12.5
bBff 2 12.5
bbfF 2 12.5
BBFF 1 6.3
BBff 1 6.3
bbFF 1 6.3
bbff 1 6.3
For bbff we have only 6.3% probability
I’m pretty sure it’s y if not I’m sorry
Answer:
The input for the method is a continuous function f, an interval [a, b], and the function values f(a) and f(b). The function values are of opposite sign (there is at least one zero crossing within the interval). Each iteration performs these steps: Calculate c, the midpoint of the interval, c = a + b2.
Step-by-step explanation:
trust
We know that
(ad)/(bd)=d/d time a/b=a/b since d's cancel
also
if a/b=c/d in simplest form, then a=c and b=d
we have
p/(x^2-5x+6)=(x+4)/(x-2)
therefor
p/(x^2-5x+6)=d/d times (x+4)/(x-2)
p/(x^2-5x+6)=d(x+4)/d(x-2)
therefor
p=d(x+4) and
x^2-5x+6=d(x-2)
we can solve last one
factor
(x-6)(x+1)=d(x-2)
divide both sides by (x-2)
[(x-6)(x+1)]/(x-2)=d
sub
p=d(x+4)
p=([(x-6)(x+1)]/(x-2))(x+4)
We know that the area is 20.
Since 20 is a small number: lets list out possible combinations of lengths and widths.
1 * 20
2 * 10
4 * 5
L = 7 + 3w
lets see which on makes sense.
L = 7 + 3w
20 = w7 + 3w^2
3w^2 + 7w -20 = 0
(3w - 10)(w - 2)
w can equal 10/3 or 2.
So the dimensions: are Width = 2 Length = 10