1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
2 years ago
9

Round your answer to the nearest hundredth.

Mathematics
1 answer:
Elena L [17]2 years ago
4 0

Answer:

Step-by-step explanation:

Tan(A) = opposite / adjacent

A = 35

opposite = x

adjacent = 2

Solution

Tan(A) = x / 2             Multiply both sides by 2

2*tan(35) = x

Tan(35) = .7002

2 * 0.7002 = x

x = 1.400 or 1.40 to the nearest 1 hundredth.

You might be interested in
Please help me!!!!!!
svetlana [45]

Answer:

2nd Option: 2sec²Ѳ

Step-by-step explanation:

Please see the attached pictures for full solution.

8 0
3 years ago
Suppose that the waiting time for an elevator at a local shopping mall is uniformly distributed from 0 to 90 seconds.
Nady [450]

Answer:

1/3

Step-by-step explanation:

60-90 is 30 numbers, right? So it is 30/90, or 1/3

7 0
3 years ago
Consider a system with one component that is subject to failure, and suppose that we have 115 copies of the component. Suppose f
castortr0y [4]

Answer:

Step-by-step explanation:

From the given information:

the mean (\mu) = 115 \times 20

= 2300

Standard deviation = 20 \times \sqrt{115}

Standard deviation (SD) = 214.4761

TO find:

a) P(x > 3500)= P(Z > \dfrac{3500-\mu}{214.4761})

P(x > 3500)= P(Z > \dfrac{3500-2300}{214.4761})

P(x > 3500)= P(Z > \dfrac{1200}{214.4761})

P(x > 3500)= P(Z >5.595)

From the Z-table, since 5.595 is > 3.999

P(x > 3500)=1-0.9999

P(x > 3500) = 0.0001

b)

Here, the replacement time for the mean (\mu) = \dfrac{0+0.5}{2}

= 0.25

Replacement time for the Standard deviation \sigma = \dfrac{0.5-0}{\sqrt{12}}

\sigma = 0.1443

For 115 component, the mean time = (115 × 20)+(114×0.25)

= 2300 + 28.5

= 2328.5

Standard deviation = \sqrt{(115\times 20^2) +(114\times (0.1443)^2)}

= \sqrt{(115\times 400) +(114\times 0.02082249}

= \sqrt{(46000) +2.37376386}

= \sqrt{(46000) +(2.37376386)}

= \sqrt{46002.374}

= 214.482

Now; the required probability:

P(x > 4125) = P(Z > \dfrac{4125- 2328.5}{214.482})

P(x > 4125) = P(Z > \dfrac{1796.5}{214.482})

P(x > 4125) = P(Z >8.376)

P(x > 4125) =1-  P(Z

From the Z-table, since 8.376 is > 3.999

P(x > 4125) = 1 - 0.9999

P(x > 4125) = 0.0001

7 0
3 years ago
Determine the value of k
KATRIN_1 [288]

Answer:

\displaystyle k = 6

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Algebra II</u>

  • Piecewise Functions<u> </u>

<u>Calculus</u>

  • Limits
  • Continuity

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

Continuous at x = 2

\displaystyle f(x) = \left \{ {{2x^2 \ if \ x < 2} \atop {x + k \ if \ x \geq 2}} \right.

<u>Step 2: Solve for </u><em><u>k</u></em>

  1. Definition of Continuity:                                                                                   \displaystyle  \lim_{x \to 2^+} 2x^2 =  \lim_{x \to 2^-} x + k
  2. Evaluate limits:                                                                                                  \displaystyle 2(2)^2 =  2 + k
  3. Evaluate exponents:                                                                                         \displaystyle 2(4) =  2 + k
  4. Multiply:                                                                                                             \displaystyle 8 =  2 + k
  5. [Subtraction Property of Equality] Subtract 2 on both sides:                        \displaystyle 6 = k
  6. Rewrite:                                                                                                             \displaystyle k = 6

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Limits - Continuity

Book: College Calculus 10e

4 0
3 years ago
Read 2 more answers
What is the value of a?
kaheart [24]

Answer:

a=\dfrac{16}{3}\ un.

Step-by-step explanation:

In right triangle XZW, the height WY is the geometric mean of segments ZY and XY.

Hence,

WY^2 =ZY\cdot XY,\\ \\4^2=3\cdot a,\\ \\a=\dfrac{16}{3}\ un.

7 0
3 years ago
Read 2 more answers
Other questions:
  • Use properties to find the sum or product 89 +27+11
    6·2 answers
  • What is the intersection of AB and ED
    11·1 answer
  • Find the curved surface area of a cone of radius 7cm and height 24cm
    8·1 answer
  • Suppose you are going to graph the data in the table below. What data should be represented on each axis, and what would be the
    9·2 answers
  • Calculate the slope of the line through the points (6,-8) and (3,-4)
    8·1 answer
  • The original price, p, of a single scoop of ice cream has increased by 7%. The new price can be represented as 1.07p. Which expr
    8·1 answer
  • Acid rain accumulations in lakes and streams in the northeastern part of the United States are a major environmental concern. A
    14·1 answer
  • Colin invests £1100 into his bank account.
    9·2 answers
  • What’s the an and the a10
    10·1 answer
  • PLS HELP ASAP THANKS ILL GIVE BRAINLKEST I NEED A DOUBLE CHECK THANKS
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!