825 meters away
i think bit too sure
(x-9) (x+2)=x²+2x-9x-18=x²-7x-18
The answer of this problem is A because 3 times 21 is 63 and then you plus 1
which is 64
Current amount in account
P=36948.61
Future value of this amount after n years at i=11% annual interest
F1=P(1+i)^n
=36948.61(1.11)^n
Future value of $3000 annual deposits after n years at i=11%
F2=A((1+i)^n-1)/i
=3000(1.11^n-1)/0.11
We'd like to have F1+F2=280000, so forming following equation:
F1+F2=280000
=>
36948.61(1.11)^n+3000(1.11^n-1)/0.11=280000
We can solve this by trial and error.
The rule of 72 tells us that money at 11% deposited will double in 72/11=6.5 years, approximately.
The initial amount of 36948.61 will become 4 times as much in 13 years, equal to approximately 147800 by then.
Meanwhile the 3000 a year for 13 years has a total of 39000. It will only grow about half as fast, namely doubling in about 13 years, or worth 78000.
Future value at 13 years = 147800+78000=225800.
That will take approximately 2 more years, or 225800*1.11^2=278000.
So our first guess is 15 years, and calculate the target amount
=36948.61(1.11)^15+3000(1.11^15-1)/0.11
=280000.01, right on.
So it takes 15.00 years to reach the goal of 280000 years.
Answer:
11x + 8 +8x +12 =27 (drop the parenthesis, there's no actual need for them)
19x +20 =27 (i combined like terms and then subtracted 20 from both sides)
19x = 7 (divide both sides by 19 to get x alone)
x= 7/19 or 0.36842105 (the answer)
Step-by-step explanation: