Its the 3, 4, 5 Pythagorean Triple so it would be D 8 inches
Check the picture below, that's just an example of a parabola opening upwards.
so the cost equation C(b), which is a quadratic with a positive leading term's coefficient, has the graph of a parabola like the one in the picture, so the cost goes down and down and down, reaches the vertex or namely the minimum, and then goes back up.
bearing in mind that the quantity will be on the x-axis and the cost amount is over the y-axis, what are the coordinates of the vertex of this parabola? namely, at what cost for how many bats?

![\bf \left( -\cfrac{-7.2}{2(0.06)}~~,~~390-\cfrac{(-7.2)^2}{4(0.06)} \right)\implies (60~~,~~390-216) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (\stackrel{\textit{number of bats}}{60}~~,~~\stackrel{\textit{total cost}}{174})~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%28%20-%5Ccfrac%7B-7.2%7D%7B2%280.06%29%7D~~%2C~~390-%5Ccfrac%7B%28-7.2%29%5E2%7D%7B4%280.06%29%7D%20%5Cright%29%5Cimplies%20%2860~~%2C~~390-216%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%28%5Cstackrel%7B%5Ctextit%7Bnumber%20of%20bats%7D%7D%7B60%7D~~%2C~~%5Cstackrel%7B%5Ctextit%7Btotal%20cost%7D%7D%7B174%7D%29~%5Chfill)
Yellow :) & yes, hope your day is good
You have an angle of elevation of 3 degrees and you're 2000 ft from base of 30 story building.
<span>Draw a picture of this. Then tan(3) = ht of bldg/2000 </span>
<span>I get a height of 104.82 ft rounded to 2 dp. </span>
<span>5. Ok. use the Pythagorean Theorem here to find the hypotenuse of the right triangle </span>
<span>hypt = sqrt(50^2 + 9^2) </span>
<span>Now sine of the angle of elevation is 50/hypt. = 0.984 or 0.98 to 2 dp.</span>