1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kobotan [32]
2 years ago
8

If you drew a vertical line every time the SIN graph touched the x-axis, what function would that create an asymptote for?

Mathematics
1 answer:
Gnoma [55]2 years ago
8 0

Answer:symptotes are invisible lines which are graphed function will approach very closely but not ever touch. This lesson covers vertical and horizontal

Step-by-step explanation: :)

You might be interested in
The value of (1-w) (1 -w^2), where w is the cube root of a complex number is
NeX [460]

Answer:(1-w) (1-w*2)

=1-w*2-w+w*3

=1-w-w*2+1

=1-1+1

=1

Step-by-step explanation:

at first we should multiply them with each other

then, put the value of w*3 i.e. w*3=1

then, put the value of -w-w*2 i.e. 1

then, the final answer is 1.

3 0
2 years ago
Luke order an extra large square pizza for all of his friends. The area of the pizza was 289cm². what is the perimeter of crust
AlekseyPX

Answer:

68 cm

Step-by-step explanation:

√289 = 17

each side is 17 cm

17 * 4 = 68 cm

3 0
3 years ago
X-8>-3 inequality solution
natka813 [3]
You can add 8 to both sides so you get
x>5
6 0
3 years ago
Write the expression in factored form. 81m^2-49
ivolga24 [154]
We can use the difference of two squares, which is:

x^2 + y^2 = (x-y)(x+y)

So,

(9m-7)(9m+7)

Hope this helps!
5 0
3 years ago
Trouble finding arclength calc 2
kiruha [24]

Answer:

S\approx1.1953

Step-by-step explanation:

So we have the function:

y=3-x^2

And we want to find the arc-length from:

0\leq x\leq \sqrt3/2

By differentiating and substituting into the arc-length formula, we will acquire:

\displaystyle S=\int\limits^\sqrt3/2}_0 {\sqrt{1+4x^2} \, dx

To evaluate, we can use trigonometric substitution. First, notice that:

\displaystyle S=\int\limits^\sqrt3/2}_0 {\sqrt{1+(2x)^2} \, dx

Let's let y=2x. So:

y=2x\\dy=2\,dx\\\frac{1}{2}\,dy=dx

We also need to rewrite our bounds. So:

y=2(\sqrt3/2)=\sqrt3\\y=2(0)=0

So, substitute. Our integral is now:

\displaystyle S=\frac{1}{2}\int\limits^\sqrt3}_0 {\sqrt{1+y^2} \, dy

Let's multiply both sides by 2. So, our length S is:

\displaystyle 2S=\int\limits^\sqrt3}_0 {\sqrt{1+y^2} \, dy

Now, we can use trigonometric substitution.

Note that this is in the form a²+x². So, we will let:

y=a\tan(\theta)

Substitute 1 for a. So:

y=\tan(\theta)

Differentiate:

y=\sec^2(\theta)\, d\theta

Of course, we also need to change our bounds. So:

\sqrt3=\tan(\theta), \theta=\pi/3\\0=\tan(\theta), \theta=0

Substitute:

\displaystyle 2S= \int\limits^{\pi/3}_0 {\sqrt{1+\tan^2(\theta)}\sec^2(\theta) \, d\theta

The expression within the square root is equivalent to (Pythagorean Identity):

\displaystyle 2S= \int\limits^{\pi/3}_0 {\sqrt{\sec^2(\theta)}\sec^2(\theta) \, d\theta

Simplify:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta

Now, we have to evaluate this integral. To do this, we can use integration by parts. So, let's let u=sec(θ) and dv=sec²(θ). Therefore:

u=\sec(\theta)\\du=\sec(\theta)\tan(\theta)\, d\theta

And:

dv=\sec^2(\theta)\, d\theta\\v=\tan(\theta)

Integration by parts:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-(\int\limits^{\pi/3}_0 {\tan^2(\theta)\sec(\theta)} \, d\theta)

Again, let's using the Pythagorean Identity, we can rewrite tan²(θ) as:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-(\int\limits^{\pi/3}_0 {(\sec^2(\theta)-1)\sec(\theta)} \, d\theta)

Distribute:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-(\int\limits^{\pi/3}_0 {(\sec^3(\theta)-\sec(\theta)} \, d\theta)

Now, let's make the single integral into two integrals. So:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-(\int\limits^{\pi/3}_0 {\sec^3(\theta)\, d\theta-\int\limits^{\pi/3}_0 {\sec(\theta)}\, d\theta)

Distribute the negative:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)-\int\limits^{\pi/3}_0 {\sec^3(\theta)\, d\theta+\int\limits^{\pi/3}_0 {\sec(\theta)}\, d\theta

Notice that the integral in the first equation and the second integral in the second equation is the same. In other words, we can add the second integral in the second equation to the integral in the first equation. So:

\displaystyle 2S= 2\int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\sec(\theta)\tan(\theta)+\int\limits^{\pi/3}_0 {\sec(\theta)}\, d\theta

Divide the second and third equation by 2. So: \displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\frac{1}{2}(\sec(\theta)\tan(\theta)+\int\limits^{\pi/3}_0 {\sec(\theta)}\, d\theta)

Now, evaluate the integral in the second equation. This is a common integral, so I won't integrate it here. Namely, it is:

\displaystyle 2S= \int\limits^{\pi/3}_0 (\sec(\theta))\sec^2(\theta) \, d\theta=\frac{1}{2}(\sec(\theta)\tan(\theta)+\ln(\tan(\theta)+\sec(\theta))

Therefore, our arc length will be equivalent to:

\displaystyle 2S=\frac{1}{2}(\sec(\theta)\tan(\theta)+\ln(\tan(\theta)+\sec(\theta)|_{0}^{\pi/3}

Divide both sides by 2:

\displaystyle S=\frac{1}{4}(\sec(\theta)\tan(\theta)+\ln(\tan(\theta)+\sec(\theta)|_{0}^{\pi/3}

Evaluate:

S=\frac{1}{4}((\sec(\pi/3)\tan(\pi/3)+\ln(\tan(\pi/3)+\sec(\pi/3))-(\sec(0)\tan(0)+\ln(\tan(0)+\sec(0))

Evaluate:

S=\frac{1}{4}((2\sqrt3+\ln(\sqrt3+2))-((1)(0)+\ln(0+1))

Simplify:

S=\frac{1}{4}(2\sqrt 3+\ln(\sqrt3+2)}

Use a calculator:

S\approx1.1953

And we're done!

7 0
3 years ago
Other questions:
  • How many centiliters are in 6.02 decaliters
    10·1 answer
  • 18y4, 27y", and 63y?
    9·1 answer
  • On a circular playground, the distance from its center to the edge of the playground is 36 feet. What is the approximate circumf
    10·1 answer
  • Draw a diagram. Write the Segment Addition Postulate for the points described. Then solve for missing length.
    12·1 answer
  • Is the system of equations is consistent, consistent and coincident, or inconsistent?
    8·2 answers
  • I need help someone PLZZZ HELP ME
    7·1 answer
  • Which value is in the domain of f(x)?
    5·1 answer
  • help I’ll give you brainliest
    5·2 answers
  • Which value us not a solution to 3 > w + 17
    12·2 answers
  • [Pre-Calc] Please Help! I don’t know where to start. How do I do this?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!