![\bf [cot(\theta )+csc(\theta )]^2=\cfrac{1+cos(\theta )}{1-cos(\theta )} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{doing the left-hand side}}{[cot(\theta )+csc(\theta )]^2}\implies cot^2(\theta )+2cot(\theta )csc(\theta )+csc^2(\theta ) \\\\\\ \cfrac{cos^2(\theta )}{sin^2(\theta )}+2\cdot \cfrac{cos(\theta )}{sin(\theta )}\cdot \cfrac{1}{sin(\theta )}+\cfrac{1}{sin^2(\theta )}\implies \cfrac{cos^2(\theta )}{sin^2(\theta )}+\cfrac{2cos(\theta )}{sin^2(\theta )}+\cfrac{1}{sin^2(\theta )}](https://tex.z-dn.net/?f=%5Cbf%20%5Bcot%28%5Ctheta%20%29%2Bcsc%28%5Ctheta%20%29%5D%5E2%3D%5Ccfrac%7B1%2Bcos%28%5Ctheta%20%29%7D%7B1-cos%28%5Ctheta%20%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bdoing%20the%20left-hand%20side%7D%7D%7B%5Bcot%28%5Ctheta%20%29%2Bcsc%28%5Ctheta%20%29%5D%5E2%7D%5Cimplies%20cot%5E2%28%5Ctheta%20%29%2B2cot%28%5Ctheta%20%29csc%28%5Ctheta%20%29%2Bcsc%5E2%28%5Ctheta%20%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7Bcos%5E2%28%5Ctheta%20%29%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%2B2%5Ccdot%20%5Ccfrac%7Bcos%28%5Ctheta%20%29%7D%7Bsin%28%5Ctheta%20%29%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bsin%28%5Ctheta%20%29%7D%2B%5Ccfrac%7B1%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%5Cimplies%20%5Ccfrac%7Bcos%5E2%28%5Ctheta%20%29%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%2B%5Ccfrac%7B2cos%28%5Ctheta%20%29%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%2B%5Ccfrac%7B1%7D%7Bsin%5E2%28%5Ctheta%20%29%7D)
![\bf \cfrac{\stackrel{\textit{perfect square trinomial}}{cos^2(\theta )+2cos(\theta )+1}}{sin^2(\theta )}\implies \boxed{\cfrac{[cos(\theta )+1]^2}{sin^2(\theta )}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{doing the right-hand-side}}{\cfrac{1+cos(\theta )}{1-cos(\theta )}}\implies \stackrel{\textit{multiplying by the denominator's conjugate}}{\cfrac{1+cos(\theta )}{1-cos(\theta )}\cdot \cfrac{1+cos(\theta )}{1+cos(\theta )}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Cstackrel%7B%5Ctextit%7Bperfect%20square%20trinomial%7D%7D%7Bcos%5E2%28%5Ctheta%20%29%2B2cos%28%5Ctheta%20%29%2B1%7D%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B%5Bcos%28%5Ctheta%20%29%2B1%5D%5E2%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bdoing%20the%20right-hand-side%7D%7D%7B%5Ccfrac%7B1%2Bcos%28%5Ctheta%20%29%7D%7B1-cos%28%5Ctheta%20%29%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20by%20the%20denominator%27s%20conjugate%7D%7D%7B%5Ccfrac%7B1%2Bcos%28%5Ctheta%20%29%7D%7B1-cos%28%5Ctheta%20%29%7D%5Ccdot%20%5Ccfrac%7B1%2Bcos%28%5Ctheta%20%29%7D%7B1%2Bcos%28%5Ctheta%20%29%7D%7D)
![\bf \cfrac{[1+cos(\theta )]^2}{\underset{\textit{difference of squares}}{[1-cos(\theta )][1+cos(\theta )]}}\implies \cfrac{[cos(\theta )+1]^2}{1^2-cos^2(\theta )} \\\\\\ \cfrac{[cos(\theta )+1]^2}{1-cos^2(\theta )}\implies \boxed{\cfrac{[cos(\theta )+1]^2}{sin^2(\theta )}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5B1%2Bcos%28%5Ctheta%20%29%5D%5E2%7D%7B%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B1-cos%28%5Ctheta%20%29%5D%5B1%2Bcos%28%5Ctheta%20%29%5D%7D%7D%5Cimplies%20%5Ccfrac%7B%5Bcos%28%5Ctheta%20%29%2B1%5D%5E2%7D%7B1%5E2-cos%5E2%28%5Ctheta%20%29%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B%5Bcos%28%5Ctheta%20%29%2B1%5D%5E2%7D%7B1-cos%5E2%28%5Ctheta%20%29%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B%5Bcos%28%5Ctheta%20%29%2B1%5D%5E2%7D%7Bsin%5E2%28%5Ctheta%20%29%7D%7D)
recall that sin²(θ) + cos²(θ) = 1, thus sin²(θ) = 1 - cos²(θ).
Step-by-step explanation:
You can also write it as 45+28.
In English, a double negative is when two negative words are used in the same sentence.
A double negative in Math is when you have a scenario like this. For example, 1-(-1) is also equal to 1+1.
So 45+28 is 73.
Hope it helps!
Answer:
$21.65
brainliest?
Step-by-step explanation:
1 yard = 3 feet
so 5 feet would = to 1 2/3 yards = 5/3 yards
12.99*5/3
12 99/100=1299/100
1299/100 x 5/3=433/20
433/20 = 21 13/20
13/20 x 5/5= 65/100=0.65
0.65+21
$21.65
hope this helped!
have a good day!
Answer:
1/4
Step-by-step explanation:
The probability of it being a cardinal is the number of cardinals / the total number of possible birds the hawk could eat.
There are 3 + 5 + 4 = 12 total birds near the bird feeder.
There are 3 cardinals.
So the probability is 3/12 = 1/4 that the cardinal is eaten!
Answer:

Step-by-step explanation:






