By assuming the standard deviation of population 2.2 the confidence interval is 8.67 toys,8.94 toys.
Given sample size of 1492 children,99% confidence interval , sample mean of 8.8, population standard deviation=2.2.
This type of problems can be solved through z test and in z test we have to first find the z score and then p value from normal distribution table.
First we have to find the value of α which can be calculated as under:
α=(1-0.99)/2=0.005
p=1-0.005=0.995
corresponding z value will be 2.575 for p=0.995 .
Margin of error=z*x/d
where x is mean and d is standard deviation.
M=2.575*2.2/
=0.14
So the lower value will be x-M
=8.8-0.14
=8.66
=8.67 ( after rounding)
The upper value will be x+M
=8.8+0.14
=8.94
Hence the confidence interval will be 8.67 toys and 8.94 toys.
Learn more about z test at brainly.com/question/14453510
#SPJ4
Answer:
1 1/3
Step-by-step explanation:
Your answer is <span><span>1^8
</span>
Hope this helps!</span>
Answer:
4.


5.


Step-by-step explanation:
The sides of a (30 - 60 - 90) triangle follow the following proportion,

Where (a) is the side opposite the (30) degree angle, (
) is the side opposite the (60) degree angle, and (2a) is the side opposite the (90) degree angle. Apply this property for the sides to solve the two given problems,
4.
It is given that the side opposite the (30) degree angle has a measure of (8) units. One is asked to find the measure of the other two sides.
The measure of the side opposite the (60) degree side is equal to the measure of the side opposite the (30) degree angle times (
). Thus the following statement can be made,

The measure of the side opposite the (90) degree angle is equal to twice the measure of the side opposite the (30) degree angle. Therefore, one can say the following,

5.
In this situation, the side opposite the (90) degree angle has a measure of (6) units. The problem asks one to find the measure of the other two sides,
The measure of the side opposite the (60) degree angle in a (30-60-90) triangle is half the hypotenuse times the square root of (3). Therefore one can state the following,

The measure of the side opposite the (30) degree angle is half the hypotenuse (the side opposite the (90) degree angle). Hence, the following conclusion can be made,
