Answer:
false true
Explanation:
In the code snippet, two string objects are created in java with the value Java.
The print method first checks the condition s1==s2 and outputs false, This is so because the operator == which is used for equality in other primitive data types like ints cannot be applied to the String data type. In the second part of the print function, the equals function s1.equals(s2) is used and it prints true since the two string are equal
1.)
<span>((i <= n) && (a[i] == 0)) || (((i >= n) && (a[i-1] == 0))) </span>
<span>The expression will be true IF the first part is true, or if the first part is false and the second part is true. This is because || uses "short circuit" evaluation. If the first term is true, then the second term is *never even evaluated*. </span>
<span>For || the expression is true if *either* part is true, and for && the expression is true only if *both* parts are true. </span>
<span>a.) (i <= n) || (i >= n) </span>
<span>This means that either, or both, of these terms is true. This isn't sufficient to make the original term true. </span>
<span>b.) (a[i] == 0) && (a[i-1] == 0) </span>
<span>This means that both of these terms are true. We substitute. </span>
<span>((i <= n) && true) || (((i >= n) && true)) </span>
<span>Remember that && is true only if both parts are true. So if you have x && true, then the truth depends entirely on x. Thus x && true is the same as just x. The above predicate reduces to: </span>
<span>(i <= n) || (i >= n) </span>
<span>This is clearly always true. </span>
Answer:
the RAM if i am not mistaking