<h2>KDEL Sequence & Protein Unfolding</h2>
Explanation:
(a) The distinction between proteins sent out from and those held in the ER has all the earmarks of being represented by two unmistakable sorts of focusing on successions that explicitly mark proteins as either bound for transport to the Golgi or bound for maintenance in the ER. Numerous proteins are held in the ER lumen because of the nearness of the focusing on grouping Lys-Asp-Glu-Leu (KDEL, in the single-letter code) at their carboxy end. In the event that this succession is erased from a protein that is regularly held in the ER (e.g., BiP), the transformed protein is rather moved to the Golgi and emitted from the cell. On the other hand, the expansion of the KDEL arrangement to the carboxy end of proteins that are typically discharged makes them be held in the ER. The maintenance of some trans membrane proteins in the ER is comparatively directed by short C-terminal successions that contain two lysine deposits (KKXX sequences)
(b) Proteins are large molecules composed of folded chains of amino acids. Every protein has a unique shape and that shape determines the things it does. You could think of them as keys that fit into certain locks around the body Proteins do lots of different things around the body, including speeding up biological processes, recognizing antibodies, providing structure to certain body parts, transporting substances, regulating genes, and responding to signals inside and outside the body Proteins range in size from small ones, such as insulin - only 51 amino acids long, to extremely large ones, such as titin almost 27,000 amino acids long. No matter their size, they must be folded into a particular shape in order to function. Sometimes, though, things go wrong and cause the protein to unfold
Answer:
Still acidic water
Explanation:
A bog or bogland is a wetland that accumulates peat, a deposit of dead plant material—often mosses, and in a majority of cases, sphagnum moss. It is one of the four main types of wetlands. Other names for bogs include mire, mosses, quagmire, and muskeg; alkaline mires are called fens.
Answer:
The two main reasons are nonpolar core of the bilayer and the active transport.
Explanation:
The membrane is structured to have two outer layers that are polar and an inner layer that is nonpolar.
If a membrane protein is exposed to the solvent, i<em>t will also have a polar side. It would be very difficult for the polar face of the membrane to move through the nonpolar core of the bilayer.</em> Therefore, this model is not feasible.
One major form of transport, active transport, moves solutes up the concentration gradient. <em>The binding of a solute and then release on another side of the membrane would only work for facilitated diffusion because it would cause a net movement of solutes down the concentration gradient.</em> It is unclear how energy could be expended to drive this process in the transverse carrier model.<em> Therefore, the transverse carrier model does not explain active transport.</em>
The other answer is wrong. It would be pollution. Hope this helps you!
Answer:
<em>Respiration and photosynthesis. </em>
Explanation:
<em>Respiration provides the cell with oxygen while photosynthesis provides it with carbon dioxide. Both functions release what is needed for the other. Therefore, these functions interact.</em>