Answer:
Since k is constant, we can find k given any point by multiplying the x-coordinate by the y-coordinate. For example, if y varies inversely as x, and x = 5 when y = 2, then the constant of variation is k = xy = 5(2) = 10. Thus, the equation describing this inverse variation is xy = 10 or y = .
I hope this was the answer u were looking for.
Answer:
The answer would be C. 200 mph.
Step-by-step explanation:
200 times 4 is 800
Answer:
i think it's <C and <R since they're 90 degree angles, though they are small
Greatest To Least 1. AC 2. BC 3. AB
Givens
y = 2
x = 1
z(the hypotenuse) = √(2^2 + 1^2) = √5
Cos(u) = x value / hypotenuse = 1/√5
Sin(u) = y value / hypotenuse = 2/√5
Solve for sin2u
Sin(2u) = 2*sin(u)*cos(u)
Sin(2u) = 2(
) = 4/5
Solve for cos(2u)
cos(2u) = - sqrt(1 - sin^2(2u))
Cos(2u) = - sqrt(1 - (4/5)^2 )
Cos(2u) = -sqrt(1 - 16/25)
cos(2u) = -sqrt(9/25)
cos(2u) = -3/5
Solve for Tan(2u)
tan(2u) = sin(2u) / cos(2u) = 4/5// - 3/5 = - 0.8/0.6 = - 1.3333 = - 4/3
Notes
One: Notice that you would normally rationalize the denominator, but you don't have to in this case. The formulas are such that they perform the rationalizations themselves.
Two: Notice the sign on the cos(2u). The sin is plus even though the angle (2u) is in the second quadrant. The cos is different. It is about 126 degrees which would make it a negative root (9/25)
Three: If you are uncomfortable with the tan, you could do fractions.
