The balanced equation for the above reaction is
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of NaOH moles required-0.5000 M / 1000 mL/L x 21.17 mL = 0.010585 mol
According to stoichiometry, acid moles required are 1/2 of the base moles reacted
Therefore number of H₂SO₄ moles reacted - 0.010585 /2 mol
Number of moles in 42.35 mL of H₂SO₄ - 0.010585 /2 mol
Therefore in 1 L solution - (0.010585) /2 / 42.35 mL x 1000 mL/L = 0.125 M
Molarity of H₂SO₄ - 0.125 M
Hey there!:
Molar mass N₂ = 28.0134 g/mol
28.0134 g ------------------- 22.4 L (at STP )
mass N₂ -------------------- 50.0 L
mass N₂ = 50.0 x 28.0134 / 22.4
mass N₂ = 1400.67 / 22.4
mass N₂ = 62.529 g
Hope this helps!
I believe it is 65.37.
Let me know if this is correct. Also good luck!!
Answer: Bacterial species where observed Typical number on cell Distribution on cell surface
Escherichia coli (common pili or Type 1 fimbriae) 100-200 uniform
Neisseria gonorrhoeae 100-200 uniform
Streptococcus pyogenes (fimbriae plus the M-protein) ? uniform
Pseudomonas aeruginosa 10-20 polar
Explanation:
Pili are structures that extend from the surface of some bacterial cells.
These are hollow, non-helical, filamentous appendages.
Hope it helps you
Answer:
Collisions between gas particles are elastic; there is no net gain or loss of kinetic energy.
Explanation:
When a gas is paced in a container, the molecules of the gas have little or no intermolecular interaction between them. There is a lot of space between the molecules of the gas.
The gas molecules move at very high speed and collide with each other and with the walls of container.
The collision of these particles with each other is perfectly elastic hence the kinetic energy of the colliding gas particles do not change.