Answer:
22.25 g
Explanation:
To find the mass, you need to convert moles to grams and get 22.25 g.
Answer:
We identify nucleic acid strand orientation on the basis of important chemical functional groups. These are the <u>phosphate</u> group attached to the 5' carbon atom of the sugar portion of a nucleotide and the <u>hydroxyl</u> group attached to the <u>3'</u> carbon atom
Explanation:
Nucleic acids are polymers formed by a phosphate group, a sugar (ribose in RNA and deoxyribose in DNA) and a nitrogenous base. In the chain, the phosphate groups are linked to the 5'-carbon and 3'-carbon of the ribose (or deoxyribose) and the nitrogenous base is linked to the 2-carbon. Based on this structure, the nucleic acid chain orientation is identified as the 5'-end (the free phosphate group linked to 5'-carbon of the sugar) and the 3'-end (the free hydroxyl group in the sugar in 3' position).
Answer:
V₂ → 106.6 mL
Explanation:
We apply the Ideal Gases Law to solve the problem. For the two situations:
P . V = n . R . T
Moles are still the same so → P. V / R. T = n
As R is a constant, the formula to solve this is: P . V / T
P₁ . V₁ / T₁ = P₂ .V₂ / T₂ Let's replace data:
(1.20 atm . 73mL) / 112°C = (0.55 atm . V₂) / 75°C
((87.6 mL.atm) / 112°C) . 75°C = 0.55 atm . V₂
58.66 mL.atm = 0.55 atm . V₂
58.66 mL.atm / 0.55 atm = V₂ → 106.6 mL
Making an atom or a virus structure
Answer:
A student's name paired with the sport that they play.
Explanation: