Answer:
x = 0, 4/5
Step-by-step explanation:
The zero-product property states that if the product of a and b is zero, then either a = 0, b = 0, or both terms equal zero
- Here our a term is -x and our b term is (5x - 4)
- Setting each term equal to zero and solving for x we get
- -x = 0 → x = 0
- 5x - 4 = 0 → 5x = 4 → x = 4/5
Given: 

A.)Consider





Also,





Since, 
Therefore, both functions are inverses of each other.
B.
For the Composition function 
Since, the function
is not defined for
.
Therefore, the domain is 
For the Composition function 
Since, the function
is not defined for
.
Therefore, the domain is 
Ok so you would just take the two fractions and simply if needed and that the answer!
<h3>
Answer: 12.5 (choice C)</h3>
=================================================
We apply the pythagorean theorem to find this answer.
a = 11 and b = 6 are the given legs
c = unknown hypotenuse
So,
a^2+b^2 = c^2
c = sqrt( a^2+b^2 )
c = sqrt( 11^2 + 6^2 )
c = sqrt( 121 + 36 )
c = sqrt( 157 )
c = 12.52996 approximately
c = 12.5
Side note: once you replace 'a' and b with 11 and 6, you can compute everything with a calculator in one single step more or less. The steps above are shown if you wanted to find the exact value sqrt(157).