Hi there!
![\boxed{= 70 + cos(12) - cos(2) \approx 71.26}](https://tex.z-dn.net/?f=%5Cboxed%7B%3D%2070%20%2B%20cos%2812%29%20-%20cos%282%29%20%5Capprox%2071.26%7D)
![\int\limits^{12}_{2} {x-sin(x)} \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B12%7D_%7B2%7D%20%7Bx-sin%28x%29%7D%20%5C%2C%20dx)
We can evaluate using the power rule and trig rules:
![\int x^n = \frac{x^{n+1}}{n+1}](https://tex.z-dn.net/?f=%5Cint%20x%5En%20%3D%20%5Cfrac%7Bx%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D)
![\int x = \frac{1}{2}x^{2}](https://tex.z-dn.net/?f=%5Cint%20x%20%3D%20%5Cfrac%7B1%7D%7B2%7Dx%5E%7B2%7D)
![\int -sin(x) = cos(x)](https://tex.z-dn.net/?f=%5Cint%20-sin%28x%29%20%3D%20cos%28x%29)
Therefore:
![\int\limits^{12}_{2} {x-sin(x)} \, dx = [\frac{1}{2}x^{2}+cos(x)]_{2}^{12}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B12%7D_%7B2%7D%20%7Bx-sin%28x%29%7D%20%5C%2C%20dx%20%3D%20%5B%5Cfrac%7B1%7D%7B2%7Dx%5E%7B2%7D%2Bcos%28x%29%5D_%7B2%7D%5E%7B12%7D)
Evaluate:
![(\frac{1}{2}(12^{2})+cos(12)) - (\frac{1}{2}(2^2)+cos(2))\\= (72 + cos(12)) - (2 + cos(2))\\\\= 70 + cos(12) - cos(2) \approx 71.26](https://tex.z-dn.net/?f=%28%5Cfrac%7B1%7D%7B2%7D%2812%5E%7B2%7D%29%2Bcos%2812%29%29%20-%20%28%5Cfrac%7B1%7D%7B2%7D%282%5E2%29%2Bcos%282%29%29%5C%5C%3D%20%2872%20%2B%20cos%2812%29%29%20-%20%282%20%2B%20cos%282%29%29%5C%5C%5C%5C%3D%2070%20%2B%20cos%2812%29%20-%20cos%282%29%20%5Capprox%2071.26)
Answer:
yes because it | | means absolute value
Step-by-step explanation:
Answer:
hummmm
Step-by-step explanation:
Most of the time, an inequality has more than one or even infinity solutions. For example the inequality: x>3 . The solutions of this inequality are "all numbers strictly greater than 3". ... The inequality has an infinite amount of solutions