Answer:
hope it helps...
Explanation:
The Principle of Moments states that when a body is balanced, the total clockwise moment about a point equals the total anticlockwise moment about the same point.
Answer:
- 3 cm
Explanation:
From the mirror formula;
1/f = 1/v + 1/u ; where f is the focal length, v is the image distance, and u is the object distance.
1/-4.5 = 1/9 + 1/v
1/v = -1/4.5 - 1/9
= -1/3
Therefore;
v = -3 cm
Hence;
Image distance is - 3cm
Answer:
using cleats other than gym shoes
Explanation:
the cleats hwve spikes and help gain speed
Answer:
1.
2.
3.The results from part 1 and 2 agree when r = R.
Explanation:
The volume charge density is given as

We will investigate this question in two parts. First r < R, then r > R. We will show that at r = R, the solutions to both parts are equal to each other.
1. Since the cylinder is very long, Gauss’ Law can be applied.

The enclosed charge can be found by integrating the volume charge density over the inner cylinder enclosed by the imaginary Gaussian surface with radius ‘r’. The integration of E-field in the left-hand side of the Gauss’ Law is not needed, since E is constant at the chosen imaginary Gaussian surface, and the area integral is

where ‘h’ is the length of the imaginary Gaussian surface.

2. For r> R, the total charge of the enclosed cylinder is equal to the total charge of the cylinder. So,

3. At the boundary where r = R:

As can be seen from above, two E-field values are equal as predicted.
A should be the answer since it makes the water down there cold and the air also. (asked my grandma haha