Complete Question:
Gauss's law:
Group of answer choices
A. can always be used to calculate the electric field.
B. relates the electric field throughout space to the charges distributed through that space.
C. only applies to point charges.
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
E. relates the surface charge density to the electric field.
Answer:
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Answer:
Explanation:
Givens
m = 942
F = 6731
t = 21 seconds
vi = 0
vf = ?
Formula
F = m * (vf - vi ) / t
Solution
6731 = 942*(vf - 0)/21 Multiply both sides by 21
6731 * 21 = 942*vf
141351 = 942*vf Divide by 942
141351/942 = vf
vf = 151 m/s
Answer
The rate at which the magnetic field is changing is
Explanation
From the question we are told that
The electric field strength is 
The radius is 
The rate of change of the magnetic field is mathematically represented as

Where
is change of a unit length

Where A is the area which is mathematically represented as

So
where L is the circumference of the circle which is mathematically represented as

So
![E (2 \pi r ) = (\pi r^2 ) [\frac{dB}{dt} ]](https://tex.z-dn.net/?f=E%20%282%20%5Cpi%20r%20%29%20%3D%20%20%28%5Cpi%20r%5E2%20%29%20%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D)
![E = \frac{r}{2} [\frac{dB}{dt} ]](https://tex.z-dn.net/?f=E%20%20%3D%20%20%20%5Cfrac%7Br%7D%7B2%7D%20%20%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D)
![[\frac{dB}{dt} ] = \frac{E}{ \frac{r}{2} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D%20%3D%20%5Cfrac%7BE%7D%7B%20%5Cfrac%7Br%7D%7B2%7D%20%7D)
substituting values
![[\frac{dB}{dt} ] = \frac{3.5 *10^{-3}}{ \frac{15}{2} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D%20%3D%20%5Cfrac%7B3.5%20%2A10%5E%7B-3%7D%7D%7B%20%5Cfrac%7B15%7D%7B2%7D%20%7D)
If you and the source of sound are moving apart, then the pitch (frequency) <em>you hear</em> is <em>lower</em> than the pitch (frequency) that's actually leaving the source.
It doesn't matter whether you or the source is the one moving, only that the distance between you is increasing.
Experimental Evidence.
Scientists conduct experiments or observations to gather evidence that either support or disprove a given hypothesis. Hence, all the scientific explanations are based on this body of observations.