Answer:
1. r=anything
2. d=6
3. b=4
Step-by-step explanation:
Assume that the rule connecting height of the candle to time is a linear one. If you do, then we have to find the equation of this line, and then use this equation to predict the height of the candle after 11 hours.
Two points on this line are (6,17.4) and (23, 7.2). The slope is thus
7.2-17.4 -6
m = --------------- = ----------- or -3/5.
23-6 10
Find the equation of the line. I'm going to use the slope-intercept formula:
y = mx + b => 7.2 = (-3/5)(23) + b. Solving for b, b = 21.
Now we know that y = (-3/5)x + 21
Let x=11 to predict the height of the candle at that time.
y = (-3/5)(11) + 21 = 14.4 inches (answer)
Answer:
{x\ x e U and x has a negative square root} is an empty set.
Step-by-step explanation:
If x e U, x is a negative real number, and they don't have a square root (they don't have even roots). Their square roots are complex numbers, not real ones.
For the first digit, we have 5 options that are 4,5,6,7,8 . For the second digit, we have 4 options which are 3,4,5 or 6 and for the third digit, we have the options of all numbers except 2 or 5 that is 1,3,4,6,7,8,9,0 . SO we have 8 options for third digit . So to find the total number of options, we need to multiply all the possible options for each digit that is 5 times 4 times 8 = 160 . So the number of possible options are 160 .
Step-by-step explanation:
<h2>
<em><u>concept :</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10or, y = (5/4)x(5/2).</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>1</em><em>)</em></h2><h2 /><h2>
<em><u>5y + 4x = 35</u></em></h2><h2 /><h2>
<em><u>5y + 4x = 35ory = (-4/5)x + 7.</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>2</em><em>)</em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1Hence, the lines are perpendicular.</u></em></h2>