Answer:
45 ways
Step-by-step explanation:
We are given;
there are 3 different math courses, 3 different science courses, and 5 different history courses.
Thus;
Number ways to take math course = 3
The number of ways to take science course = 3
The number of ways to take history course = 5
Now, if a student must take one of each course, the different ways it can be done is;
possible ways = 3 x 3 x 5 = 45 ways.
Thus, number of different ways in which a student must take one of each subject is 45 ways.
Answer:
24-(L times 2) then divide the awnser by 2
Step-by-step explanation:
Answer:
7/20
Step-by-step explanation:
given,
2r = 7/10
r= 7/10*1/2
r= 7/20
3x^0 (2x^3y^2)^4
--------------------------
(4x^7y^4) ^2
= 3 * 1 (2x^3y^2)^4
-------------------------- Zero Exponent Property X^0 =1
(4x^7y^4) ^2
3 (2^4 *x^3*4 y^2*4)
-------------------------- power of a power property x^a ^b = x^(a*b)
4^2 x^7*2 y^4*2
3 *16 *x^12 y^8
-------------------------- simplify
16 x^14 y^8
3 *x^12 y^8
-------------------------- simplify
x^14 y^8
3 *x^(12-14) y^(8-8)
-------------------------- Quotient of Power X^a/ X^b = X^ (a-b)
3x^-2 y^0 simplify
3x^-2 *1 Zero Exponent Property X^0 =1
3 / x^2 Negative exponent property x^-a = 1/x^a