Answer:
The log-mean-temperature-difference is 24.03⁰C
Step-by-step explanation:
First we need to know if the heat exchanger is in parallel flow or counter-flow. However, counter flow arrangement is best used to recover heat.
L.M.T.D for counter flow is given as;
![L.M.T.D =\frac{(T_h_f_1 -T_c_f_2)-(T_h_f_2 -T_c_f_1)}{2.3log[\frac{T_h_f_1 -T_c_f_2}{T_h_f_2 -T_c_f_1}]}](https://tex.z-dn.net/?f=L.M.T.D%20%3D%5Cfrac%7B%28T_h_f_1%20-T_c_f_2%29-%28T_h_f_2%20-T_c_f_1%29%7D%7B2.3log%5B%5Cfrac%7BT_h_f_1%20-T_c_f_2%7D%7BT_h_f_2%20-T_c_f_1%7D%5D%7D)
where;
Thf₁ is the initial temperature of the hot fluid = 80°C
Tcf₂ is the final temperature of the cold fluid = 51.5°C
Thf₁ - Tcf₂ = 80 - 51.5 = 28.5⁰C
Thf₂ is the final temperature of the hot fluid = 30°C
Tcf₁ is the initial temperature of the cold fluid = 10°C
Thf₂ - Tcf₁ = 30 - 10 = 20⁰C
![L.M.T.D = \frac{28.5 -20}{2.3Log[\frac{28.5}{20}]} \\\\L.M.T.D = \frac{8.5}{0.3538} =24.03^oC](https://tex.z-dn.net/?f=L.M.T.D%20%3D%20%5Cfrac%7B28.5%20-20%7D%7B2.3Log%5B%5Cfrac%7B28.5%7D%7B20%7D%5D%7D%20%5C%5C%5C%5CL.M.T.D%20%3D%20%5Cfrac%7B8.5%7D%7B0.3538%7D%20%3D24.03%5EoC)
Therefore, the log-mean-temperature-difference is 24.03⁰C
<h2>PLEASE MARK ME AS BRAINLIEST</h2>
the number of small cars rented is 6.
The number of large cars rented is 8.
Step-by-step explanation:
Step 1 :
Each small car can hold = 5 people
Each large car can hold = 8 people
Step 2 :
Number of small cars rented = x
Number of large cars rented = x + 2
Step 3 :
Altogether the total cars can hold 94 people.
Total people = 5 people (No. of small cars) + 8 people (No. of large cars)
94 = 5 (x) + 8 (x+2)
94 = 5x + 8x + 16
78 = 13x
x = 78/13 = 6
∴ Number of small cars, x = 6 small cars
Number of large cars, x+2 = 8 large cars.
33% as a fraction would be:
Answer: a
Step-by-step explanation:
Step-by-step explanation:
refer the above attachment