1) The measures of angles H and F are 121°, respectively.
2) The measures of angles U and V are 65° and 139°, respectively.
3) The <em>missing</em> angles are
,
,
,
,
,
and
.
4) The <em>missing</em> angles are
,
,
,
,
,
,
,
and
, respectively.
5) The measure of side
is
.
6) The measure of side
is
.
7) The measure of side
is
.
8) The value of
is 17.
9) The value of
is 6.
10) The measure of angle EDC is 107°.
11) The measure of angle RST is 122°.
<h3>
How find missing angles and sides in rhombuses</h3>
1) According to geometry, the sum of <em>internal</em> angles in a quadrilateral equals 360°. Since the given figure is a <em>kite-type</em> rhombus, the measures of angles H and F are 121°, respectively. 
2) According to geometry, the sum of <em>internal</em> angles in a quadrilateral equals 360°. Since the given figure is a <em>kite-type</em> rhombus, the measures of angles U and V are 65° and 139°, respectively. 
3) According to geometry, the sum of <em>internal</em> angles in a triangle equals 180° and the sum of <em>internal</em> angles in a quadrilateral equals 360°. The <em>missing</em> angles are
,
,
,
,
,
and
, respectively. 
4) According to geometry, the sum of <em>internal</em> angles in a triangle equals 180° and the sum of <em>internal</em> angles in a quadrilateral equals 360°. The <em>missing</em> angles are
,
,
,
,
,
,
,
and
, respectively. 
5) In this case we need to apply Pythagorean theorem and <em>triangle</em> and <em>quadrilateral</em> properties to determine the missing side:


The measure of side
is
. 
6) In this case we need to apply Pythagorean theorem and <em>triangle</em> and <em>quadrilateral</em> properties to determine the missing side:
, 



The measure of side
is
. 
7) In this case we need to apply Pythagorean theorem and <em>triangle</em> and <em>quadrilateral</em> properties to determine the missing side:
,
,
,
, 

![NP = \sqrt{[7\cdot (4)-1]^{2}-12^{2}}](https://tex.z-dn.net/?f=NP%20%3D%20%5Csqrt%7B%5B7%5Ccdot%20%284%29-1%5D%5E%7B2%7D-12%5E%7B2%7D%7D)

The measure of side
is
. 
8) According to geometry, the sum of <em>internal</em> angles in a quadrilateral equals 360°. Since the given figure is a <em>kite-type</em> rhombus, the value of
is 17. 
9) According to geometry, the sum of <em>internal</em> angles in a quadrilateral equals 360°. Since the given figure is a <em>kite-type</em> rhombus, the value of
is 6.
10) According to geometry, the sum of <em>internal</em> angles in a triangle equals 180°. Hence, we have the following expressions:
![m\angle EDC = 180^{\circ}-90^{\circ}-[2\cdot (2)+13]](https://tex.z-dn.net/?f=m%5Cangle%20EDC%20%3D%20180%5E%7B%5Ccirc%7D-90%5E%7B%5Ccirc%7D-%5B2%5Ccdot%20%282%29%2B13%5D)

The measure of angle EDC is 107°. 
11) According to geometry, the sum of <em>internal</em> angles in a triangle equals 180°. Hence, the angle RST is:


The measure of angle RST is 122°. 
To learn more on quadrilaterals, we kindly invite to check this verified question: brainly.com/question/25240753