Answer:
a) 6.26 m/s
b) 7.67 m/s
Explanation:
The potential energy at height h0 is initially ...
PE0 = mgh0
At height h1, the potential energy is ...
PE1 = mgh1
The difference in potential energy is converted to kinetic energy:
PE0 -PE1 = KE1 = (1/2)m(v1)^2
Solving for v1, we have ...
mg(h0 -h1) = (1/2)m(v1)^2
2g(h0 -h1) = (v1)^2
v1 = √(2g(h0 -h1))
__
a) When the body is 1 m high, its speed is ...
v = √(2(9.8)(3 -1)) ≈ 6.26 m/s . . . at 1 m high
__
b) When the body is 0 m high, its speed is ...
v = √(2(9.8)(3 -0)) ≈ 7.67 m/s . . . when it reaches the ground
Answer:
1) 
2) 
3) 

Explanation:
Given:
width of river, 
speed of stream with respect to the ground, 
speed of the swimmer with respect to water, 
<u>Now the resultant of the two velocities perpendicular to each other:</u>



<u>Now the angle of the resultant velocity form the vertical:</u>



- Now the distance swam by the swimmer in this direction be d.
so,



Now the distance swept downward:



2)
On swimming 37° upstream:
<u>The velocity component of stream cancelled by the swimmer:</u>



<u>Now the net effective speed of stream sweeping the swimmer:</u>



<u>The component of swimmer's velocity heading directly towards the opposite bank:</u>



<u>Now the angle of the resultant velocity of the swimmer from the normal to the stream</u>:



- Now let the distance swam in this direction be d'.



<u>Now the distance swept downstream:</u>



3)
Time taken in crossing the rive in case 1:



Time taken in crossing the rive in case 2:



Longitude lines because latitude lines are the ones that run east to west
Don't you just have to multiply them together but after u do the exponent?
Answer:
The closest thing to "rub bing two sticks together" is the hand-drill. You will need a fireboard (a small cedar board is good) and a thin, straight stick.
Explanation: