We are given : Zeros x=7 and x=4 and leading coefficent 1.
In order to find the quadratic function in standard form, we need to find the factors of quadratic function first and the multiply by given leading coefficent.
For the given zeros x=7 and x=4, we get the factors (x-7) and (x-4).
So, we need to multiply (x-7) and (x-4) by foil method.
We get
(x-7)(x-4) = x*x + x* -4 -7*x -7*-4
x^2 -4x -7x +28.
Combining like terms, we get
-4x-7x = -11x
x^2 -4x -7x +28 = x^2 -11x +28.
Now, we need to multiply x^2 -11x +28 quadratic by leading coefficent 1.
We get
1(x^2 -11x +28) = x^2 -11x +28.
Therefore, the required quadratic function in standard form is x^2 -11x +28.
This is not a polynomial equation unless one of those is squared. As it stands x=-.833. If you can tell me which is squared I can help solve the polynomial.
Ok, that is usually notated as x^3 to be clear. I'll solve it now.
x^3-13x-12=0
Then use factor theorum to solve x^3-13x-12/x+1 =0
So you get one solution of x+1=0
x=-1
Then you have x^2-x-12 now you complete the square.
Take half of the x-term coefficient and square it. Add this value to both sides. In this example we have:
The x-term coefficient = −1
The half of the x-term coefficient = −1/2
After squaring we have (−1/2)2=1/4
When we add 1/4 to both sides we have:
x2−x+1/4=12+1/4
STEP 3: Simplify right side
x2−x+1/4=49/4
STEP 4: Write the perfect square on the left.
<span>(x−1/2)2=<span>49/4
</span></span>
STEP 5: Take the square root of both sides.
x−1/2=±√49/4
STEP 6: Solve for x.
<span>x=1/2±</span>√49/4
that is,
<span>x1=−3</span>
<span>x2=4</span>
<span>and the one from before </span>
<span>x=-1</span>
Answer:
30 units
Step-by-step explanation:
If the w=5 and we know that the length is 2(5)=10
For perimeter, there are two sides.
2(10)+2(5)=30 units