Answer:
the speed of the command module relative to Earth just after the separation = 4943.2 Km/hr
Explanation:
Given:
speed of space vehicle =5000 km/hr
rocket motor speed = 71 km/hr relative to the command module
mass of module = m
mass of motor = 4m
By conservation of linear momentum
Pi = Pf
Pi= initial momentum
Pf= final momentum
Since, the motion is only in single direction

Where M is the mass of the space vehicle which equals the sum of motor's mass and the command's mass, Vi its initial velocity, V_mE is velocity of motor relative to Earth, and V_cE is its velocity of the command relative to Earth.
The velocity of motor relative to Earth equals the velocity of motor relative to command plus the velocity of command relative to Earth.
V_mE = V_mc+V_cE
Where V_mc is the velocity of motor relative to command this yields


substituting the values we get


= 4943.2 Km/hr
the speed of the command module relative to Earth just after the separation = 4943.2 Km/hr
Answer:
Between 0 and 1 seconds (B)
Explanation:
The velocity of the car over time is represented by the line graphed here
the steeper the line, the greater change in velocity that occurred in a given time frame.
The steepest portion of the line is between 0-1 seconds, which means that the greatest rate of change occurred between 0-1 seconds.
(acceleration is the rate of change)
Featured snippet from the web
Plants competing for sunlight or growing in dark conditions will develop elongated stems and poorly developed leaves. They are often tall and thin, lacking color in their stems. In severe cases, this physiological condition is called etiolation. Therefore, the darker the environment, the taller the plants tend to be
Answer:
1.08×10⁹ J
Explanation:
From the question given above, the following data were obtained:
Power (P) = 100 kilowatt
Time (t) = 3 hours
Energy (E) =?
Next, we shall convert 100 kilowatt to Watts. This can be obtained as follow:
1 KW = 1000 W
Therefore,
100 KW = 100 KW × 1000 W / 1 KW
100 KW = 100000 W
Thus, 100 KW is equivalent to 100000 W.
Next, we shall convert 3 hrs to second (s). This can be obtained as follow:
1 h = 3600 s
Therefore,
3 h = 3 h × 3600 s / 1 h
3 h = 10800 s
Thus, 3 h is equivalent to 10800 s.
Finally, we shall determine the amount of energy consumed as follow:
Power (P) = 100000 W
Time (t) = 10800 s
Energy (E) =?
P = E/t
100000 = E / 10800
Cross multiply
E = 100000 × 10800
E = 1.08×10⁹ J
Therefore, 1.08×10⁹ J of energy was consumed.
The planet of an item will remain constant across the planet, but if you give it more mass, the gravitational force increases while the acceleration due to gravity remains constant.
<h3 /><h3>What is the difference between mass and weight?</h3>
The mass of the body is defined as the amount of matter a body has. It is denoted by m and its unit is kg. Mass is the quantity on which a lot of physical quantity depends.
Weight is defined as the amount of force an object exerts on the surface. It is given as the product of mass and the gravitational pull.
Mass is an independent quantity it never depends on the other. While weight is a dependent quantity that depends upon the gravitational pull.
The value of gravitational pull is different in the different parts of the universe. For example, on the earth, the value of gravitational acceleration is 9.81 m/sec².While on the moon it is g/6.
Weight is change according to the place or surrounding while the mass of the body is constant everywhere.
The planet of an item will remain constant across the cosmos, but if you give it more mass, the gravitational force increases while the acceleration of gravity remains constant.
If a planet's gravity weakens, the weight of that planet will likewise be altered. With an increase in mass, weight also rises.
Hence, the gravitational force increases while the acceleration due to gravity remains constant for the given case.
To learn more about the mass refer to the link;
brainly.com/question/19694949
#SPJ1