1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
3 years ago
5

The water-ice particles forming Saturn's rings are frozen together into a thin sheet that rotates around Saturn like a solid bod

y.
A. True
B. False
Physics
1 answer:
vaieri [72.5K]3 years ago
4 0

Answer:

B. False

Explanation:

According to research by several scientists, Saturn's rings aren't solid, as they appear from Earth.  They are actually made up of floating chunks of water ice, rocks and dust that range in diferent sizes from specks to enormous, even house-sized pieces that orbit Saturn in a ring pattern.

You might be interested in
A friend throws a heavy ball toward you while you are standing on smooth ice. You can either catch the ball or deflect it back t
baherus [9]

Answer:

Explanation:

My speed after the interaction will depend upon the impulse the ball will make on me . Now impulse can be expressed as follows

Impulse = change in momentum

change in momentum in the ball will be maximum when the ball bounces back with the same velocity which can be shown as follows

change in momentum = mv - ( - mv ) = 2mv

So when ball is bounced back with same velocity , it suffers greatest impulse from my hand . In return ,  it reacts with the same impulse on my hand pushing me with greatest impulse according to third law of motion. this maximizes my speed after the interaction.

6 0
3 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
Find the current that flows in a silicon bar of 10-μm length having a 5-μm × 4-μm cross-section and having free-electron and hol
klasskru [66]

The current flowing in silicon bar is 2.02 \times 10^-12 A.

<u>Explanation:</u>

Length of silicon bar, l = 10 μm = 0.001 cm

Free electron density, Ne = 104 cm^3

Hole density, Nh = 1016 cm^3

μn = 1200 cm^2 / V s

μр = 500 cm^2 / V s

The total current flowing in the bar is the sum of the drift current due to the hole and the electrons.

J = Je + Jh

J = n qE μn + p qE μp

where, n and p are electron and hole densities.

J = Eq (n μn + p μp)

we know that E = V / l

So, J = (V / l) q (n μn + p μp)

     J = (1.6 \times 10^-19) / 0.001 (104 \times 1200 + 1016 \times 500)

     J = 1012480 \times 10^-16 A / m^2.

or

J = 1.01 \times 10^-9 A / m^2

Current, I = JA

A is the area of bar, A = 20 μm = 0.002 cm

I = 1.01 \times 10^-9 \times 0.002 = 2.02 \times 10^-12

So, the current flowing in silicon bar is 2.02 \times 10^-12 A.  

6 0
3 years ago
To completely describe the motion of an object, you need
notsponge [240]

Answer:

D

Explanation:

7 0
3 years ago
When a guitar string plays the note "a," the string vibrates at 440 hz ?
Rama09 [41]
Yes, that's correct. The note "A" (which is used to tune the other strings of the guitar) corresponds to a frequency of 440 Hz.
8 0
3 years ago
Other questions:
  • What is the speed of a 48-kilogram dog running across<br>a lawn with 216 joules of kinetic energy?​
    9·1 answer
  • A scientist observes debris added to a landform from a melting glacier. This is evidence for which type of natural process?
    13·2 answers
  • A ball is thrown vertically upward from the edge of a bridge 22.0 m high with an initial speed of 16.0 m/s. The ball falls all t
    9·1 answer
  • The blue laser in a blue ray DVD player is 405nm laser in vacuum. The aser strikes a quartz crystal with index of refraction 1.4
    9·1 answer
  • An installation consists of a 10-kVA, single-phase transformer with a 440-volt primary and a 110-volt, 2-wire secondary using in
    8·1 answer
  • Height-weight charts are an accurate way to measure ideal body weight.
    10·2 answers
  • If the weight of the bowling ball acts down with a force of 200 N, what force would the table need to push up with to keep the b
    13·1 answer
  • Calculate the magnitude of the average gravitational force between earth and the moon
    14·1 answer
  • Which one of the Earth's layers is the thinnest?
    13·1 answer
  • You notice that when you turn off your bedroom lights, the kitchen lights can stay on. Based on this observation, what kind of c
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!