Let f(x) = x^2 − 5. Find f(-3)
2 answers:
Answer:
f(-3) = 4
Step-by-step explanation:
f(x) = x² - 5
f(x) is a function with input x, meaning it is an expression which has terms involving x;
x is a variable and can be considered a space holder;
f(-3) is the function with input -3, this simply means replacing the space holder, i.e. x, with -3;
f(-3) = (-3)² - 5
f(-3) = 9 - 5
f(-3) = 4
Answer:
f(-3)=4
Step-by-step explanation:
Substitute x=-3 into the function
f(-3)=(-3)^2-5
f(-3)=9-5
f(-3)=4
You might be interested in
Use a system of equations.
(x=# of small dogs, y=# of big dogs)
x+y=9 (times by -5) -5x-5y=-45
5x+8y=51
Then add the equations together and the x's cancel.
3y=6
y=2
So he walked 2 big dogs and 7 little dogs.
Whattttttt!!!!!!!!!!!!!!!!!
x+2*y-(4)≤0
<span>here yhu go</span>
It is both equations are equal to -0.076.
Answer:
![S_{12}=\sum_{i=1}^{12} [\frac{3}{2}+(i-1)\times \frac{5}{6}]](https://tex.z-dn.net/?f=S_%7B12%7D%3D%5Csum_%7Bi%3D1%7D%5E%7B12%7D%20%5B%5Cfrac%7B3%7D%7B2%7D%2B%28i-1%29%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%5D)

Step-by-step explanation:

![a_1=\frac{3}{2}+0\times \frac{5}{6}\\\\a_2=\frac{3}{2}+1\times \frac{5}{6}\\\\a_3=\frac{3}{2}+2\times \frac{5}{6}\\\\.\\.\\.\\a_n=\frac{3}{2}+(n-1)\times \frac{5}{6}\\\\S_n=a_1+a_2+a_3+......+a_n\\\\S_n=(\frac{3}{2}+0\times \frac{5}{6})+(\frac{3}{2}+1\times \frac{5}{6})+(\frac{3}{2}+2\times \frac{5}{6})+....+(\frac{3}{2}+[n-1]\times \frac{5}{6})\\\\S_n=\sum_{i=1}^n [\frac{3}{2}+(i-1)\times \frac{5}{6}]\\\\S_n=(\frac{3}{2}+\frac{3}{2}+\frac{3}{2}+...n\ times)+\frac{5}{6}(1+2+3+4+...+(n-1))\\\\](https://tex.z-dn.net/?f=a_1%3D%5Cfrac%7B3%7D%7B2%7D%2B0%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%5C%5C%5C%5Ca_2%3D%5Cfrac%7B3%7D%7B2%7D%2B1%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%5C%5C%5C%5Ca_3%3D%5Cfrac%7B3%7D%7B2%7D%2B2%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%5C%5C%5C%5C.%5C%5C.%5C%5C.%5C%5Ca_n%3D%5Cfrac%7B3%7D%7B2%7D%2B%28n-1%29%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%5C%5C%5C%5CS_n%3Da_1%2Ba_2%2Ba_3%2B......%2Ba_n%5C%5C%5C%5CS_n%3D%28%5Cfrac%7B3%7D%7B2%7D%2B0%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%29%2B%28%5Cfrac%7B3%7D%7B2%7D%2B1%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%29%2B%28%5Cfrac%7B3%7D%7B2%7D%2B2%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%29%2B....%2B%28%5Cfrac%7B3%7D%7B2%7D%2B%5Bn-1%5D%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%29%5C%5C%5C%5CS_n%3D%5Csum_%7Bi%3D1%7D%5En%20%5B%5Cfrac%7B3%7D%7B2%7D%2B%28i-1%29%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%5D%5C%5C%5C%5CS_n%3D%28%5Cfrac%7B3%7D%7B2%7D%2B%5Cfrac%7B3%7D%7B2%7D%2B%5Cfrac%7B3%7D%7B2%7D%2B...n%5C%20times%29%2B%5Cfrac%7B5%7D%7B6%7D%281%2B2%2B3%2B4%2B...%2B%28n-1%29%29%5C%5C%5C%5C)

![S_{12}=\sum_{i=1}^{12} [\frac{3}{2}+(i-1)\times \frac{5}{6}]](https://tex.z-dn.net/?f=S_%7B12%7D%3D%5Csum_%7Bi%3D1%7D%5E%7B12%7D%20%5B%5Cfrac%7B3%7D%7B2%7D%2B%28i-1%29%5Ctimes%20%5Cfrac%7B5%7D%7B6%7D%5D)
