This is a question only you and someone who is taking that course can answer. I would need more information.
Po = 0.5385, Lq = 0.0593 boats, Wq = 0.5930 minutes, W = 6.5930 minutes.
<u>Explanation:</u>
The problem is that of Multiple-server Queuing Model.
Number of servers, M = 2.
Arrival rate,
= 6 boats per hour.
Service rate,
= 10 boats per hour.
Probability of zero boats in the system,
= 0.5385
<u>Average number of boats waiting in line for service:</u>
Lq =![[\lambda.\mu.( \lambda / \mu )M / {(M – 1)! (M. \mu – \lambda )2}] x P0](https://tex.z-dn.net/?f=%5B%5Clambda.%5Cmu.%28%20%5Clambda%20%2F%20%5Cmu%20%29M%20%2F%20%7B%28M%20%E2%80%93%201%29%21%20%28M.%20%5Cmu%20%E2%80%93%20%5Clambda%20%292%7D%5D%20x%20P0)
=
= 0.0593 boats.
The average time a boat will spend waiting for service, Wq = 0.0593 divide by 6 = 0.009883 hours = 0.5930 minutes.
The average time a boat will spend at the dock, W = 0.009883 plus (1 divide 10) = 0.109883 hours = 6.5930 minutes.
Answer:
$91,900
Explanation:
The computation of net sales revenue is shown below:-
Here, for reaching the net sales revenue we add the sales revenue and deduct the sales return and allowances with sales discounts
Net sales revenue = Sales Revenue - Sales Returns and Allowances - Sales Discounts
= $95,000 - $1,000 - $2,100
= $91,900
Therefore we have applied the above formula.
Answer:
Yes, she should buy
Explanation:
The cost price of the electronic games is $55 per unit.
The selling price is $89 per unit.
The margin is dollar = selling price - cost price
=$89- $55
=$34
As a percentage, the margin will be
=34/55 x 100
=61.82%
If her normal margin is 35%, then the offer is good for her.