Answer:
Step-by-step explanation:
As you can see from the graph I attached you, the possible solutions in the interval from 0 to 2π are approximately:

So, it's useful to solve the equation too, in order to verify the result:

Taking the inverse sine of both sides:

Using this result we can conclude the solutions in the interval from 0 to 2π are approximately:

Answer:
a) ![\mathrm{E}[\mathrm{T}]=\sum_{\mathrm{H}}^{5} \frac{200}{101-i}](https://tex.z-dn.net/?f=%5Cmathrm%7BE%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7B%5Cmathrm%7BH%7D%7D%5E%7B5%7D%20%5Cfrac%7B200%7D%7B101-i%7D)
b) ![\mathrm{Var}[\mathrm{T}]=\sum_{k=1}^{5} \frac{(200)^{2}}{(101-i)^{2}}](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bk%3D1%7D%5E%7B5%7D%20%5Cfrac%7B%28200%29%5E%7B2%7D%7D%7B%28101-i%29%5E%7B2%7D%7D)
Step-by-step explanation:
Given:
The lifetimes of the individual items are independent exponential random variables.
Mean = 200 hours.
Assume, Ti be the time between (
)st and the
failures. Then, the
are independent with
being exponential with rate
Therefore,
a) ![E[T]=\sum_{i=1}^{5} E\left[\tau_{i}\right]](https://tex.z-dn.net/?f=E%5BT%5D%3D%5Csum_%7Bi%3D1%7D%5E%7B5%7D%20E%5Cleft%5B%5Ctau_%7Bi%7D%5Cright%5D)

![\therefore \mathrm{E}[\mathrm{T}]=\sum_{\mathrm{H}}^{5} \frac{200}{101-i}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Cmathrm%7BE%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7B%5Cmathrm%7BH%7D%7D%5E%7B5%7D%20%5Cfrac%7B200%7D%7B101-i%7D)

The variance is given by, ![\mathrm{Var}[\mathrm{T}]=\sum_{i=1}^{5} \mathrm{Var}[T]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bi%3D1%7D%5E%7B5%7D%20%5Cmathrm%7BVar%7D%5BT%5D)
![\therefore \mathrm{Var}[\mathrm{T}]=\sum_{k=1}^{5} \frac{(200)^{2}}{(101-i)^{2}}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bk%3D1%7D%5E%7B5%7D%20%5Cfrac%7B%28200%29%5E%7B2%7D%7D%7B%28101-i%29%5E%7B2%7D%7D)
Great Question!
The last year part is extra information. 1200÷12 (months in a year)= 100
He will have to wash 100 cars each month.
The answer will be 0;7 and 2;112.