For the answer to the question above, I'm not sure if your question is incomplete or the data on your question is incomplete but I'll answer it anyway because some data are provided.
10,000(1+.035)^10
10,000(1.043)^10
10,000(<span>1.41059876062)
=</span><span>14,105.99
</span>14,105.99/.035
=<span>40, 3028.21</span><span>
I still hope that this helps</span>
Answer:
32
Step-by-step explanation:
2x = 64
/2 /2
x = 32
the last answer choice because that domain the the first number (x-value) and the range is the second number (y-value)
We have the linear system:

which in Matrix format is
![\left[\begin{array}{ccc}a_1&b_1\\a_2&b_2\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}c_1\\c_2\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_1%26b_1%5C%5Ca_2%26b_2%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dc_1%5C%5Cc_2%5Cend%7Barray%7D%5Cright%5D%20)
![\left[\begin{array}{ccc}-2&-6\\5&2\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}-26\\13\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%26-6%5C%5C5%262%5Cend%7Barray%7D%5Cright%5D%20%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-26%5C%5C13%5Cend%7Barray%7D%5Cright%5D%20)
We then find the value of x and y use the Cranmer's Rule:
![x= \frac{ \left[\begin{array}{ccc}c_1&b_1\\c_2&b_2\end{array}\right] }{ \left[\begin{array}{ccc}a_1&a_2\\b_1&b_2\end{array}\right] } = \frac{c_1b_2-b_1c_2}{a_1b_2-a_2b_1}](https://tex.z-dn.net/?f=x%3D%20%5Cfrac%7B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dc_1%26b_1%5C%5Cc_2%26b_2%5Cend%7Barray%7D%5Cright%5D%20%7D%7B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_1%26a_2%5C%5Cb_1%26b_2%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%20%5Cfrac%7Bc_1b_2-b_1c_2%7D%7Ba_1b_2-a_2b_1%7D%20)
![x= \frac{ \left[\begin{array}{ccc}-26&-6\\13&2\end{array}\right] }{ \left[\begin{array}{ccc}-2&-6\\5&2\end{array}\right] } = \frac{(-26)(2)-(-6)(13)}{-2)(2)-(-6)(5)} = \frac{26}{26}=1](https://tex.z-dn.net/?f=x%3D%20%5Cfrac%7B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-26%26-6%5C%5C13%262%5Cend%7Barray%7D%5Cright%5D%20%7D%7B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%26-6%5C%5C5%262%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%20%5Cfrac%7B%28-26%29%282%29-%28-6%29%2813%29%7D%7B-2%29%282%29-%28-6%29%285%29%7D%20%3D%20%5Cfrac%7B26%7D%7B26%7D%3D1%20)
![y= \frac{ \left[\begin{array}{ccc}a_1&c_1\\a_2&c_2\end{array}\right] }{ \left[\begin{array}{ccc}a_1&b_1\\a_2&b_2\end{array}\right] } = \frac{a_1c_2-a_2c_1}{a_1b_2-a_2b_1}](https://tex.z-dn.net/?f=y%3D%20%5Cfrac%7B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_1%26c_1%5C%5Ca_2%26c_2%5Cend%7Barray%7D%5Cright%5D%20%7D%7B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_1%26b_1%5C%5Ca_2%26b_2%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%20%5Cfrac%7Ba_1c_2-a_2c_1%7D%7Ba_1b_2-a_2b_1%7D%20)
![y= \frac{ \left[\begin{array}{ccc}-2&-26\\5&13\end{array}\right] }{ \left[\begin{array}{ccc}-2&-6\\5&2\end{array}\right] }= \frac{(-2)(13)-(5)(-26)}{(-2)(2)-(-6)(5)}= \frac{104}{26}=4](https://tex.z-dn.net/?f=y%3D%20%5Cfrac%7B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%26-26%5C%5C5%2613%5Cend%7Barray%7D%5Cright%5D%20%7D%7B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%26-6%5C%5C5%262%5Cend%7Barray%7D%5Cright%5D%20%7D%3D%20%5Cfrac%7B%28-2%29%2813%29-%285%29%28-26%29%7D%7B%28-2%29%282%29-%28-6%29%285%29%7D%3D%20%5Cfrac%7B104%7D%7B26%7D%3D4%20%20%20)
So we have the answers:
x = 1 and y = 4
Answer: Option A