1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
2 years ago
15

Solve the following problem: X^4-7x^2-30=0

Mathematics
2 answers:
pav-90 [236]2 years ago
6 0

Answer:

Step-by-step explanation:

Nezavi [6.7K]2 years ago
5 0

Answer:

(x^{2} -10)(x^{2} +3)

Step-by-step explanation:

You might be interested in
Juanita says that 3.5[4d - (2) (1.5)] and 2[7d - (5)(1.05)] are equivalent. Is Juanita correct? Explain your reasoning.
valkas [14]

Answer:

Yes

Step-by-step explanation:

3.5 [4d - 2*1.5] = 3.5*4d - 3.5*2*1.5

                        = 14d - 10.5

2*[7d - 5*1.05] = 2*7d - 2*5*1.05

                       = 14d -  10.5

When we are simplifying both the expression using distributive property, we get the same expression at the end.

8 0
3 years ago
Write an algebraic expression for the following: 17 more than a number.
Marysya12 [62]

Answer:

x+17

Step-by-step explanation:

Writing this for the sake of adding more characters, but yeah. 'A number' is basically x, add 17....bam! x+17

6 0
2 years ago
Read 2 more answers
Cate and Elena were playing a card game. The stack of cards in the middle had 24 cards in it to begin with. Cate added 8 cards t
Yuki888 [10]
You start with 24, there are 8 added, there are 12 taken away, then 9 are taken away. The equation looks like:
24 + 8 - 12 - 9 = <u>11</u>
7 0
3 years ago
Input output please
dlinn [17]

Step-by-step explanation:

  1. 89
  2. 81
  3. 50
  4. 83
  5. 295

<h2>hope it helps.</h2><h2>stay safe healthy and happy.</h2>
8 0
2 years ago
Determine the t critical value(s) that will capture the desired t-curve area in each of the following cases: a. Central area 5 .
Flauer [41]

Answer:

a) "=T.INV(0.025,10)" and "=T.INV(1-0.025,10)"

And we got t_{\alpha/2}=-2.228 , t_{1-\alpha/2}=2.228

b)  "=T.INV(0.025,20)" and "=T.INV(1-0.025,20)"

And we got t_{\alpha/2}=-2.086 , t_{1-\alpha/2}=2.086

c) "=T.INV(0.005,20)" and "=T.INV(1-0.005,20)"

And we got t_{\alpha/2}=-2.845 , t_{1-\alpha/2}=2.845

d) "=T.INV(0.005,50)" and "=T.INV(1-0.005,50)"

And we got t_{\alpha/2}=-2.678 , t_{1-\alpha/2}=2.678

e) "=T.INV(1-0.01,25)"

And we got t_{\alpha}= 2.485

f) "=T.INV(0.025,5)"

And we got t_{\alpha}= -2.571

Step-by-step explanation:

Previous concepts

The t distribution (Student’s t-distribution) is a "probability distribution that is used to estimate population parameters when the sample size is small (n<30) or when the population variance is unknown".

The shape of the t distribution is determined by its degrees of freedom and when the degrees of freedom increase the t distirbution becomes a normal distribution approximately.  

The degrees of freedom represent "the number of independent observations in a set of data. For example if we estimate a mean score from a single sample, the number of independent observations would be equal to the sample size minus one."

Solution to the problem

We will use excel in order to find the critical values for this case

Determine the t critical value(s) that will capture the desired t-curve area in each of the following cases:

a. Central area =.95, df = 10

For this case we want 0.95 of the are in the middle so then we have 1-0.95 = 0.05 of the area on the tails. And on each tail we will have \alpha/2=0.025.

We can use the following excel codes:

"=T.INV(0.025,10)" and "=T.INV(1-0.025,10)"

And we got t_{\alpha/2}=-2.228 , t_{1-\alpha/2}=2.228

b. Central area =.95, df = 20

For this case we want 0.95 of the are in the middle so then we have 1-0.95 = 0.05 of the area on the tails. And on each tail we will have \alpha/2=0.025.

We can use the following excel codes:

"=T.INV(0.025,20)" and "=T.INV(1-0.025,20)"

And we got t_{\alpha/2}=-2.086 , t_{1-\alpha/2}=2.086

c. Central area =.99, df = 20

 For this case we want 0.99 of the are in the middle so then we have 1-0.99 = 0.01 of the area on the tails. And on each tail we will have \alpha/2=0.005.

We can use the following excel codes:

"=T.INV(0.005,20)" and "=T.INV(1-0.005,20)"

And we got t_{\alpha/2}=-2.845 , t_{1-\alpha/2}=2.845

d. Central area =.99, df = 50

  For this case we want 0.99 of the are in the middle so then we have 1-0.99 = 0.01 of the area on the tails. And on each tail we will have \alpha/2=0.005.

We can use the following excel codes:

"=T.INV(0.005,50)" and "=T.INV(1-0.005,50)"

And we got t_{\alpha/2}=-2.678 , t_{1-\alpha/2}=2.678

e. Upper-tail area =.01, df = 25

For this case we need on the right tail 0.01 of the area and on the left tail we will have 1-0.01 = 0.99 , that means \alpha =0.01

We can use the following excel code:

"=T.INV(1-0.01,25)"

And we got t_{\alpha}= 2.485

f. Lower-tail area =.025, df = 5

For this case we need on the left tail 0.025 of the area and on the right tail we will have 1-0.025 = 0.975 , that means \alpha =0.025

We can use the following excel code:

"=T.INV(0.025,5)"

And we got t_{\alpha}= -2.571

8 0
3 years ago
Other questions:
  • Solve for f. d = 16ef² f=±4de‾‾‾√ f=±4de√e f=±de√4e f=±de√16
    12·2 answers
  • How is a graph is used to find the solution to a system of equations?
    10·1 answer
  • What is 75/100 is simplest form
    10·2 answers
  • What is bigger 30% or 6/10
    15·2 answers
  • 150.00 - 60.72- 10.00
    10·1 answer
  • For the function f(x) =
    11·1 answer
  • If f(x) = 2x – 1 and g(x) = f(x + 1), how does the graph of g compare with the graph of f?
    5·1 answer
  • 2x² – xy - 15y2<br> How to factor by grouping
    11·1 answer
  • Please answer what type of graph they are too.
    6·1 answer
  • Use substitution to solve the following system of equations. What is the value of y? {3x+2y=12{5x−y=7 A) y = -3B) y = 3C) y = -2
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!