Be sure to answer all parts. Dinitrogen difluoride, N2F2, is the only stable, simple inorganic molecule with an N=N bond. The co
mpound occurs in cis and trans forms. (a) Select which of the molecular shapes of N2F2 correspond to the cis and trans form of N2F2. I h5a II h5b III h5c cis-dinitrogen fluoride: I II III trans-dinitrogen fluoride: I II III (b) Predict the polarity, if any, of each form. cis = polar; trans = polar cis = polar; trans = nonpolar cis = nonpolar; trans = polar cis = nonpolar; trans = nonpolar
(a) The molecular shapes of cis and Trans forms of N2F2 are-
b) There is EN difference between N atom and F atom. Hence the molecule will have a bond dipole.
In Cis form two fluorine atoms are on the same side of N N bond. Hence, bond moment in N2F2 cis form) do not cancel each other. Thus the cis form is polar.
In the trans form two fluorine atoms are on the opposite side of N-N bond. Bond moment of NF cancels each other.
(a) The molecular shapes of cis and Trans forms of N2F2 are-
b) There is EN difference between N atom and F atom. Hence the molecule will have a bond dipole.
In Cis form two fluorine atoms are on the same side of N N bond. Hence, bond moment in N2F2 cis form) do not cancel each other. Thus the cis form is polar.
In the trans form two fluorine atoms are on the opposite side of N-N bond. Bond moment of NF cancels each other.
The answer is "Ro-ions which are somewhat stronger bases than the hydroxide ion. These ro-ions are also known as alkoxide ions, and these are stronger bases. the reason behind this is that the alcohols are weaker acids than the water. Alcohols are also used as solvent in some organic reactions and this offers and advantage to use ro-ions.
The molar mass should be 14.898g/mol.
I used the equation 100gx(1/xg/mol)x(1mol/2mol)x(16g/mol+x)/1)=103.7 and solve for x.
I found that equation using stoichiometry and the equation 2m+1/2O2-->m2O
The molar mass of the metal I set to x and the molar mass of the metal oxide is 16+x.
The number of protons in the nucleus of the atom is equal to the atomic number (Z). The number of electrons in a neutral atom is equal to the number of protons. The mass number of the atom (M) is equal to the sum of the number of protons and neutrons in the nucleus.