The molecular formula of the compound that we are required to find is the compound C4H8O8
<h3>What is empirical formula?</h3>
The empirical formula of a compound is a formula that shows the ratio of each atom present in the compound. We will start by dividing each mass with the relative atomic mass of the atom.
Carbon - 48.38 g/12 Hydrogen - 6.74 g/1 Oxygen - 53.5 g/16
Carbon - 4 Hydrogen - 6.74 Oxygen - 8.9
Dividing through by the lowest ratio;
Carbon - 4/4 Hydrogen - 6.74/4 Oxygen 8.9/4
Carbon 1 Hydrogen 2 Oxygen 2
The empirical formula is CH2O2.
To obtain the molecular formula; brainly.com/question/11588623
[12 + 2 + 32]n = 180
n = 180/[12 + 2 + 32]
n =4
The compound C4H8O8
Learn more about empirical formula:
Answer: 20.0 g of hydrogen chloride must simultaneously be formed
Explanation:
The balanced chemical reaction is :

According to the law of conservation of mass, mass can neither be created nor be destroyed. The mass on reactant side must be equal to the mass on product side.
Thus mass of reactants = mass of products
Given : mass of ammonium chloride = mass of reactants = 29.4 g
mass of ammonia = 9.4 g
mass of products = mass of ammonia + mass of hydrogen chloride
9.4 g +mass of hydrogen chloride = 29.4 g
mass of hydrogen chloride = 20.0 g
Input the atomic masses of Mg and P to give 134.84g/mol
Explanation:
The molar mass of a substance (atom or molecule or compound) is the mass in grams of one mole of the substance:
When dealing with an element the molar mass is the relative atomic mass expressed as g/mol.
For compounds, you add the atomic masses of the component atoms and you sum up.
You simply input the atomic mass of 3 atoms of Mg and 2 atoms of P
Atomic mass of Mg = 24.3g/mol
P = 30.97g/mole
Molar mass of Mg₃P₂ = 3(24.3) + 2(30.97) = 134.84g/mol
learn more:
Molar mass brainly.com/question/2861244
#learnwithbrainly
Out of the options, glass is the least fluid. The proof of this also lies in the fact that glass is the most difficult to melt out of all of the mentioned substances, and melting point gives us a rough estimate of the strength of intermolecular forces.
Answer : The value of equilibrium constant for this reaction at 262.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = -45.6 kJ = -45600 J
= standard entropy = -125.7 J/K
T = temperature of reaction = 262.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = -12666.6 J
R = gas constant = 8.314 J/K.mol
T = temperature = 262.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 262.0 K is 