We know that to relate solutions of with the factors of molarity and volume, we can use the equation:

**
NOTE: The volume as indicated in this question is defined in L, not mL, so that conversion must be made. However it is 1000 mL = 1 L.
So now we can assign values to these variables. Let us say that the 18 M

is the left side of the equation. Then we have:

We can then solve for

:

and

or

We now know that the total amount of volume of the 4.35 M solution will be
210 mL. This is assuming that the entirety of the 50 mL of 18 M is used and the rest (160 mL) of water is then added.
Answer:
AgC2H3O2 is: Silver acetate
The grams of oxygen that are required to produce 1 mole of H₂O is 16 g ( answer B)
<u><em> calculation</em></u>
2 CH₄ + 2NH₃ +3 O₂ → 2HCN + 6H₂O
step 1: use the mole ratio to find moles of O₂
from equation above the mole ratio of O₂: H₂O is 3:6 therefore the moles of O₂ = 1 mole x3/6 =0.5 moles
step 2: find mass of O₂
mass= moles x molar mass
from periodic table the molar mass of O₂ = 16 x2= 32 g/mol
mass O₂ = 0.5 moles x 32 g/mol = 16 g (answer B)
Answer:
The element will be 
Explanation:
Given that,
Number of proton = 80
Number of neutron = 81
Number of electron = 79
We know that,
The atomic number is equal to the number of proton.
So, the atomic number is 80.
According to atomic number,
The element will be mercury.
We need to calculate the atomic mass
Using formula of atomic mass

Put the value into the formula


We need to find the element
Using atomic mass and atomic number


So, the element will be

Put the value of A and Z
Hence, The element will be 
<span>C. C6H12O6
</span>This compound is covalent, and all salts are ionic compounds.