Answer:
wait really ? lol
Step-by-step explanation:
A/4=11/2 if you take 4/2 it equals 2 so you times the numerator and the denomerator by 2 and 11*2 equals 22 so the answer is a=22
Answer:
h = -7
Step-by-step explanation:
Given:
-49 = 7h
Divde both sides by 7:
-7 = h
Check:
-49 = 7h
-49 = 7(-7)
-49 = -49 ✅
Each division set gives the outcome of the operation 1.45 ÷ 5 which is 0.29.
- The number of hundredths in each division set is <u>D. 9</u>
Reasons:
The given Hunter's model consists of the following
One 10 × 10 number block
Four sets of a column of 10 cubes
Five individual cube pieces
Therefore;
In 1.45, we have;
1 unit
4 tenths
5 hundredths
Which gives;
Each single cube can be used to represent a hundredth in 0.05
One cube = 0.01
Each set of 10 cubes represents a tenth in 0.4
Each block of 10 by 10 can be used to represent the unit; 1
Dividing each of the 10 × 10 can be divided to sets of 20 blocks with a value of 0.2 each
The 4 sets of 10s can be divided by 5 to give sets of 8 with a value of 0.08
The 5 cubes divided 5 gives five cubes with each cube having a value of 0.01.
Therefore;
The value of each division set is 0.2 + 0.08 + 0.01 = 0.29
The number of hundredths in 0.29 = 9
The number of hundredths in each division set is therefore; <u>D. 9</u>
Learn more about number place value here:
brainly.com/question/184672
A 3d cardboard box has 6 sides, each of which are rectangles. If you unfold the 3D box, and flatten it out, then you'll be left with 6 rectangles such as what you see in the attachment below. This is one way to unfold the box. This flattened drawing is the net of the 3D rectangular prism. You can think of it as wrapping paper that covers the exterior of the box. There are no gaps or overlapping portions. If you can find the area of each piece of the net, and add up those pieces, that gets you the total area of the net. This is the exactly the surface area of the box.
In the drawing below, I've marked the sides as: top, bottom, left, right, front, back. This way you can see how the 3D box unfolds and how the sides correspond to one another. Other net configurations are possible.