With continuous data, it is possible to find the midpoint of any two distinct values. For instance, if h = height of tree, then its possible to find the middle height of h = 10 and h = 7 (which in this case is h = 8.5)
On the other hand, discrete data can't be treated the same way (eg: if n = number of people, then there is no midpoint between n = 3 and n = 4).
-------------------------------------
With that in mind, we have the following answers
1) Continuous data. Time values are always continuous. Any two distinct time values can be averaged to find the midpoint
2) Continuous data. Like time values, temperatures can be averaged as well.
3) Discrete data. Place locations in a race or competition are finite and we can't have midpoints. We can't have a midpoint between 9th and 10th place for instance.
4) Continuous data. We can find the midpoint and it makes sense to do so when it comes to speeds.
5) Discrete data. This is a finite number and countable. We cannot have 20.5 freshman for instance.
Answer
a. 28˚
b. 76˚
c. 104˚
d. 56˚
Step-by-step explanation
Given,
∠BCE=28° ∠ACD=31° & line AB=AC .
According To the Question,
- a. the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment.(Alternate Segment Theorem) Thus, ∠BAC=28°
- b. We Know The Sum Of All Angles in a triangle is 180˚, 180°-∠CAB(28°)=152° and ΔABC is an isosceles triangle, So 152°/2=76˚
thus , ∠ABC=76° .
- c. We know the Sum of all angles in a triangle is 180° and opposite angles in a cyclic quadrilateral(ABCD) add up to 180˚,
Thus, ∠ACD + ∠ACB = 31° + 76° ⇔ 107°
Now, ∠DCB + ∠DAB = 180°(Cyclic Quadrilateral opposite angle)
∠DAB = 180° - 107° ⇔ 73°
& We Know, ∠DAC+∠CAB=∠DAB ⇔ ∠DAC = 73° - 28° ⇔ 45°
Now, In Triangle ADC Sum of angles in a triangle is 180°
∠ADC = 180° - (31° + 45°) ⇔ 104˚
- d. ∠COB = 28°×2 ⇔ 56˚ , because With the Same Arc(CB) The Angle at circumference are half of the angle at the centre
For Diagram, Please Find in Attachment
The converse would be If x² = 100 then x = -10
So essentially if the conditional statement is p → q then the converse is q → p (In essence, the converse of a conditional statement is formed by interchanging the hypothesis and the conclusion.)
Answer:
Step-by-step explanation:
y = mx +b
Here , m is the slope and b is the y-intercept
y = (1/2)x - 3
y-intercept = -3