1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arsen [322]
2 years ago
9

Write an equation (a) in slope-intercept form and (b) in standard form for the line passing through (-3,5) and parallel to x + 4

y=7
Mathematics
1 answer:
Dmitry [639]2 years ago
6 0

Answer:

  • \boxed{\sf Standard-form :x + 4y -17=0 }\\

  • \boxed{\sf Slope-intercept\ form :y =\dfrac{-1}{4}x +\dfrac{17}{4}}

Step-by-step explanation:

Here a equation of the line is given to us and we need to find out the equation of line which passes through the given point and parallel to the given line , the given equation is ,

\longrightarrow x + 4y = 7\\

Firstly convert it into <em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>n</em><em>t</em><em>e</em><em>r</em><em>c</em><em>e</em><em>p</em><em>t</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em> </em>of the line which is <u>y</u><u> </u><u>=</u><u> </u><u>m</u><u>x</u><u> </u><u>+</u><u> </u><u>x</u><u> </u>, as ;

\longrightarrow 4y = -x + 7  \\

\longrightarrow y =\dfrac{-x}{4}+\dfrac{7}{4}\\

On comparing it to <em>y</em><em> </em><em>=</em><em> </em><em>m</em><em>x</em><em> </em><em>+</em><em> </em><em>c</em><em> </em>, we have ,

\longrightarrow m =\dfrac{-1}{4}\\

\longrightarrow c =\dfrac{7}{4}\\

Now as we know that the <em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>o</em><em>f</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>p</em><em>a</em><em>r</em><em>a</em><em>l</em><em>l</em><em>e</em><em>l</em><em> </em><em>l</em><em>i</em><em>n</em><em>e</em><em>s</em><em> </em><em>i</em><em>s</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em>. Therefore the slope of the parallel line will be ,

\longrightarrow m_{||)}=\dfrac{-1}{4}\\

Now we may use <em>p</em><em>o</em><em>i</em><em>n</em><em>t</em><em> </em><em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em> </em>of the line as ,

\longrightarrow y - y_1 = m(x-x_1) \\

On substituting the respective values ,

\longrightarrow y - 5 =\dfrac{-1}{4}\{ x -(-3)\}\\

\longrightarrow y -5=\dfrac{-1}{4}(x+3)\\

\longrightarrow 4(y -5 ) =-1(x +3) \\

\longrightarrow 4y -20 = - x -3 \\

\longrightarrow x + 4y -20+3=0\\

\longrightarrow \underset{Standard \ Form }{\underbrace{\underline{\underline{ x + 4y -17=0}}}} \\

Again the equation can be rewritten as ,

\longrightarrow y - 5 = \dfrac{-1}{4}(x +3) \\

\longrightarrow y = \dfrac{-1}{4}x -\dfrac{3}{4}+5  \\

\longrightarrow y = \dfrac{-1}{4}x -\dfrac{20-3}{4}  \\

\longrightarrow \underset{Slope-Intercept\ form }{\underbrace{\underline{\underline{  y =\dfrac{-1}{4}x +\dfrac{17}{4}}}}}\\

You might be interested in
solve each triangle. round each side length to the nearest tenth and angle measures to the nearest degree. a= 14, c= 20, B= 38 d
slavikrds [6]
A) the missing degree is 166 

b) the missing degree is 142 

c)the missing degree is 160


I do hope I helped you in a way! If I am incorrect I apologize.
7 0
3 years ago
Read 2 more answers
What adds to -288 and adds to -41?
inna [77]
-329 hood this helps
6 0
2 years ago
Read 2 more answers
Kain graphs the hyperbola (y+2)^2/64 − (x+5)^2/36 = 1 . How does he proceed? Drag a value, phrase, equation, or coordinates in t
cupoosta [38]

Answer:

1st box: (-5,-2)

2nd box: up and down

3rd box: 8

4th box: +-4/3

5th box: y+2 = +-4/3 (x+ 5)

Step-by-step explanation:

Just took the k12 unit test, hope this helps!

7 0
2 years ago
Read 2 more answers
At which vertex is the objective function C=3x-4y minimized
Oliga [24]

Options

(A) (9,0) (B) (-2,20) (C) (-5,2) (D) (0,-9)

Answer:

(B) (-2,20)

Step-by-step explanation:

Given the objective function, C=3x-4y

The vertex at which C is minimized will be the point (x,y) at which the expression gives the lowest value.

<u>Option A </u>

At (9,0), x=9, y=0

C=3(9)-4(0)=27-0

C=27

<u>Option B </u>

At (-2,20), x=-2, y=20

C=3(-2)-4(20)=-6-80

C=-86

<u>Option C</u>

At (-5,2), x=-5, y=2

C=3(-5)-4(2)=-15-8

C=-23

<u>Option D </u>

At (0,-9), x=0, y=-9

C=3(0)-4(-9)=0+36

C=36

The lowest value of C is -86. This occurs at the vertex (-2,20).

Therefore, the objective function C=3x-4y is minimized at (-2,20).

3 0
3 years ago
I need help againnnn, the 2nd and 3rd pics are supposed to be together
Trava [24]

Answer:

umm what do you mean can like you explain

4 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the equation.<br><br> –3x + 1 + 10x = x + 4<br><br> x = 1/2<br> x = 5/6<br> x = 12<br> x = 18
    13·2 answers
  • SOMEONE JUST PLEASE ANSWER THIS ASAP FOR BRAINLIEST!!!
    14·2 answers
  • A.X'3+3x2 -10x = 24<br> x + 4
    12·1 answer
  • Multiple Choice
    12·1 answer
  • Which of the following properly describe "slope"? Select all that apply
    5·1 answer
  • What is the measure, in degrees, of an angle that represents 50/350 of a circle?
    5·1 answer
  • Priya drew a circle whose area is 25 cm. Dan drew a circle whose diameter is 4 times the radius of Priya's circle. How many time
    13·1 answer
  • If the length of a rectangle is halved and its breath is tripled, what is the percentage change in its area??
    9·1 answer
  • What is the sign of 37 + (-37)?
    12·2 answers
  • Workout the equation of the line wich has a gradient of 3 and passes through the piont (-1, 3)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!