Answer:
5
Step-by-step explanation:use the cube to count(cube is in the corner.)
Answer:
35%
Step-by-step explanation:
Answer:
<h2>a³-b³ = (a-b)(a²+ab+b²)</h2>
Step-by-step explanation:
let the two perfect cubes be a³ and b³. Factring the difference of these two perfect cubes we have;
a³ - b³
First we need to factorize (a-b)³
(a-b)³ = (a-b) (a-b)²
(a-b)³ = (a-b)(a²-2ab+b²)
(a-b)³ = a³-2a²b+ab²-a²b+2ab²-b³
(a-b)³ = a³-b³-2a²b-a²b+ab²+2ab²
(a-b)³ = a³-b³ - 3a²b+3ab²
(a-b)³ = (a³-b³) -3ab(a-b)
Then we will make a³-b³ the subject of the formula from the resultinh equation;
a³-b³ = (a-b)³+ 3ab(a-b)
a³-b³ = a-b{(a-b)²+3ab}
a³-b³ = a-b{a²+b²-2ab+3ab}
a³-b³ = (a-b)(a²+b²+ab)
a³-b³ = (a-b)(a²+ab+b²)
The long division problem that can be used is (a-b)(a²+ab+b²)
Answer:
y (x² + 1) (x² - 5)
Step-by-step explanation:
<h3>Factorization:</h3>
Take 'y' from each term.
x⁴y - 4x²y - 5y = y[x⁴ - 4x² - 5]
Now factorize x⁴ - 4x² - 5.
Sum = -4
Product = -5
Factors = -5 , 1
When we add (-5) + 1, it gives (-4) and when we multiply (-5)*1, gives (-5).
x⁴ - 4x² - 5 = x⁴ + x² - 5x² - 5
= x²(x² + 1) -5(x² + 1)
= (x²+ 1) (x² - 5)
x⁴y - 4x²y - 5y = y (x² + 1) (x² - 5)
Answer:
a = 8
Step-by-step explanation:
4 : 3 = a : 6

Cross multiply
4*6 = a * 3

a = 4 * 2
a = 8