Answer:
X< 9
Step-by-step explanation:
1/3x-6<-3 is correct.
QUESTION 1
The given logarithm is

We apply the power rule of logarithms; 

We now apply the product rule of logarithm;


QUESTION 2
The given logarithm is

We apply the power rule of logarithm to get;

We apply the product to obtain;

We apply the quotient rule; 

![=\log_5(\frac{x^8 \sqrt[4]{y^3} }{z^5})](https://tex.z-dn.net/?f=%3D%5Clog_5%28%5Cfrac%7Bx%5E8%20%5Csqrt%5B4%5D%7By%5E3%7D%20%7D%7Bz%5E5%7D%29)
Compute the derivative dy/dx using the power, product, and chain rules. Given
x³ + y³ = 11xy
differentiate both sides with respect to x to get
3x² + 3y² dy/dx = 11y + 11x dy/dx
Solve for dy/dx :
(3y² - 11x) dy/dx = 11y - 3x²
dy/dx = (11y - 3x²)/(3y² - 11x)
The tangent line to the curve is horizontal when the slope dy/dx = 0; this happens when
11y - 3x² = 0
or
y = 3/11 x²
(provided that 3y² - 11x ≠ 0)
Substitute y into into the original equation:
x³ + (3/11 x²)³ = 11x (3/11 x²)
x³ + (3/11)³ x⁶ = 3x³
(3/11)³ x⁶ - 2x³ = 0
x³ ((3/11)³ x³ - 2) = 0
One (actually three) of the solutions is x = 0, which corresponds to the origin (0,0). This leaves us with
(3/11)³ x³ - 2 = 0
(3/11 x)³ - 2 = 0
(3/11 x)³ = 2
3/11 x = ³√2
x = (11•³√2)/3
Solving for y gives
y = 3/11 x²
y = 3/11 ((11•³√2)/3)²
y = (11•³√4)/3
So the only other point where the tangent line is horizontal is ((11•³√2)/3, (11•³√4)/3).