To determine the mass of CO₂, the following must be known :
- the molar mass of CaCO₃
- the mole ratio of CaCO₃ to CO₂
- the molar mass of CO₂
<h3>Further explanation</h3>
Reaction
Decomposition of CaCO₃
CaCO₃ ⇒ CaO + CO₂
Given the mass of CaCO₃, so to determine the mass of CO₂ :
1. Find the mol of CaCO₃ from the molar mass of CaCO₃

2. Find the mole ratio of CaCO₃ : CO₂(from equation = 1 : 1)

3. Find the mass of CO₂ from the molar mass of CO₂

The balanced chemical reaction is:
Na2SO4 + Ba(OH)2 = 2NaOH +BaSO4
We are given the amount of the reactants to be used. These values will be the starting point of our calculations.
0.0820 mol/L Ba(OH)2 (2.27 L solution) = 0.18614 mol Ba(OH)2
0.0664 mol/L Na2SO4 (3.06 L solution) = 0.20318 mol Na2SO4
The limiting reactant is the Ba(OH)2. The amount for this compound will be used.
0.18614 mol Ba(OH)2 (1 mol BaSO4 / 1 mol Ba(OH)2 ) (233.43 g BaSO4 / 1 mol BaSO4)= 43.4507 g BaSO4
Answer:
1.1 × 10² g
Explanation:
First, we will convert 1.0 L to cubic centimeters.
1.0 L × (10³ mL/1 L) × (1 cm³/ 1 mL) = 1.0 × 10³ cm³
The density of water is 1.0 g/cm³. The mass corresponding to 1.0 × 10³ cm³ is:
1.0 × 10³ cm³ × (1.0 g/cm³) = 1.0 × 10³ g
1 mole of water (H₂O) has a mass of 18 g, consisting of 2 g of H and 16 g of O. The mass of Hydrogen in 1.0 × 10³ g of water is:
1.0 × 10³ g H₂O × (2 g H/18 g H₂O) = 1.1 × 10² g
<h2>
Answer:</h2>
We will use dimensional analysis to solve this.
We will need the molar mass of barium, which is 137.33 g/mol.
50g ×
= .36 mol Ba
There are <em>.36 moles of barium</em> in 50g of barium
207 is the mass number. 82 would be the atomic number