Answer:
m = 180 g
Explanation:
Given data:
Energy absorbed = 108 J
Mas of gold = ?
Initial temperature = 25°C
Final temperature = 29.7 °C
Specific heat capacity of gold = 0.128 J/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT =29.7 °C - 25°C
ΔT = 4.7 °C
108 J = m ×0.128 J/g.°C ×4.7 °C
108 J = m ×0.60 J/g
m = 108 J/0.60 J/g
m = 180 g
How many hydrogen atoms are involved in this reaction? 3
They are both made out of atoms!
Explanation:
The experiment is performed at a constant atmospheric pressure. The experiment proceeds by placing an empty flask in a boiling water bath. As the temperature increases, the air inside the flask expands. Afterwards, the gas is cooled in a water bath by maintaining the amount of the air in the flask constant.
Answer:
The correct answer is option 3.
Explanation:

The expression of
is given by :
![K_w=[H^+][OH^-]](https://tex.z-dn.net/?f=K_w%3D%5BH%5E%2B%5D%5BOH%5E-%5D)
![K_w\propto [H^+]](https://tex.z-dn.net/?f=K_w%5Cpropto%20%5BH%5E%2B%5D)
![K_w\propto [OH^-]](https://tex.z-dn.net/?f=K_w%5Cpropto%20%5BOH%5E-%5D)
Rise in temperature will result in more dissociation of water molecules into hydrogen ions and hydroxide ions.
With an increase in concentration of hydrogen ions and hydroxide ions value of
will also increase.